Abstract:
Disclosed are Ethernet physical layer devices (e.g., a transceiver, a receiver and a transmitter) with integrated physical coding and forward error correction sub-layers. Each physical layer device includes a physical coding sub-layer (PCS), a forward error correction sub-layer (FEC) and integration block(s). Each integration block halts, for some number of clock cycles, a data stream in portions of a data path (e.g., portions of a transmitter (TX) data path or portions a receiver (RX) data path) within the PCS and the FEC in order to compensate for processing of that data stream by a data processor (e.g., a code word mark (CWM) inserter or a CWM remover) contained in the portion of the data path within the FEC. Use of such integration block(s) eliminates the need for redundant components in the PCS and FEC, thereby reducing latency, costs and chip area consumption. Also disclosed are associated methods.
Abstract:
Aspects relate to an electrostatic discharge (ESD) system for ESD protection and a method of manufacturing. The ESD system includes a lower substrate, an underfill layer that is disposed on the lower substrate that includes a plurality of cavities, and an upper substrate disposed on the underfill layer. The upper substrate includes a plurality of air ventilation shafts. The ESD system also includes a plurality of air gap metal tip structures disposed within one or more of the plurality of cavities in the underfill, wherein the plurality of ventilation shafts line up with the plurality of air gap metal tip structures. At least one air gap tip structure includes an upper metallic tip and a lower metallic tip that are placed along a vertical axis that is perpendicular to the substrates. An air cavity is provided between the upper metallic tip and the lower metallic tip forming an air chamber.
Abstract:
One illustrative method disclosed herein includes forming a first transistor for an inverter and forming asymmetrically spaced first and second conductive contact structures that are conductively coupled to the source region and the drain region, respectively, of the transistor. In this example, the first conductive contact structure (for the source region) is positioned a first predetermined target distance from a first side of the gate structure of the transistor, and the second conductive contact structure (for the drain region) is positioned a second predetermined target distance from a second side of the gate structure, wherein the second predetermined target distance is less than the first predetermined target distance.
Abstract:
A method for determining a slave clock to master clock time difference with an alignment marker. The method selects and transmits a first alignment marker at a first time by a transmitter that has a master clock in a first message to a receiver that has a slave clock. Subsequent to transmitting the first message, the method further transmits a second message that contains the first time and an identity of the first alignment marker. The method further receives the first message and records a second time that the first message is received. The method further receives the second message and the first time and the identity of the first alignment marker. The method further determines a transmission delay and generates a time difference from the slave clock to the master clock.
Abstract:
One illustrative method disclosed herein includes forming a first transistor for an inverter and forming asymmetrically spaced first and second conductive contact structures that are conductively coupled to the source region and the drain region, respectively, of the transistor. In this example, the first conductive contact structure (for the source region) is positioned a first predetermined target distance from a first side of the gate structure of the transistor, and the second conductive contact structure (for the drain region) is positioned a second predetermined target distance from a second side of the gate structure, wherein the second predetermined target distance is less than the first predetermined target distance.
Abstract:
Disclosed are Ethernet physical layer devices (e.g., a transceiver, a receiver and a transmitter) with integrated physical coding and forward error correction sub-layers. Each physical layer device includes a physical coding sub-layer (PCS), a forward error correction sub-layer (FEC) and integration block(s). Each integration block halts, for some number of clock cycles, a data stream in portions of a data path (e.g., portions of a transmitter (TX) data path or portions a receiver (RX) data path) within the PCS and the FEC in order to compensate for processing of that data stream by a data processor (e.g., a code word mark (CWM) inserter or a CWM remover) contained in the portion of the data path within the FEC. Use of such integration block(s) eliminates the need for redundant components in the PCS and FEC, thereby reducing latency, costs and chip area consumption. Also disclosed are associated methods.