Abstract:
A method for reducing power consumption in a transceiver front-end circuit for a cellular radio. The transceiver circuit includes a receiver module having a delta-sigma modulator that converts analog receive signals to a representative digital signal in an interleaving process, where the delta-sigma modulator includes a combiner, a low noise amplifier (LNA), an LC filter and a quantizer circuit. The LC filter is a multi-order filter and the quantizer circuit is an interleaving quantizer circuit that interleaves multiple groups of bits from the filter. The method includes selectively reducing the order of the LC filter in situations where a full dynamic range of the cellular radio is not required and reducing a bit resolution of the quantizer circuit so as to reduce the power requirements of the cellular radio.
Abstract:
An RF transmitter module for a cellular radio that includes a delta-sigma modulator having a plurality of interleaving dynamic element matching (DEM) circuits providing interleaved digital bits at a reduced clock rate. An interleaver controller controls the DEM circuits so as to provide groups of the digital bits at different points in time. In one embodiment, a summation junction adds the groups of the digital bits to provide a continuous stream of the interleaved digital bits, a DAC converts the stream of interleaved digital bits to an analog signal, and a power amplifier amplifies the analog signal.