Grain refiner for magnesium-based alloys

    公开(公告)号:US11926886B2

    公开(公告)日:2024-03-12

    申请号:US17565634

    申请日:2021-12-30

    CPC classification number: C22C23/02 C22C1/03

    Abstract: A master alloy including an alloy composition including magnesium (Mg) at a concentration of greater than or equal to about 1.00 wt. % to less than or equal to about 90 wt. %, boron (B) at a concentration of greater than or equal to about 0.01 wt. % to less than or equal to about 20 wt. %, and aluminum (Al) at a concentration of greater than or equal to about 0.1 wt. % to less than or equal to about 90 wt. %, wherein the alloy composition includes MgB2 particles at a volume fraction greater than or equal to about 0.01% to less than or equal to about 20%.

    Methods for extruding coarse-grained, low aluminum content magnesium alloys

    公开(公告)号:US12226815B2

    公开(公告)日:2025-02-18

    申请号:US17872766

    申请日:2022-07-25

    Abstract: The present disclosure provides a method of forming an extruded billet from a coarse-grained magnesium alloy billet. The method includes extruding the coarse-grained magnesium alloy biller at temperatures greater than or equal to about 300° C. to less than or equal to about 360° C. to from the extruded billet. The coarse-grained magnesium alloy billet has an average grain size greater than or equal to about 800 μm, and has a low aluminum content. The coarse-grained magnesium alloy billet includes greater than or equal to about 0.5 wt. % to less than or equal to about 3 wt. % of aluminum. The extruded billet may have a plurality of twins with lenticular morphology, which occupies an area fraction greater than or equal to about 20% of a total area of the extruded billet.

    Magnesium alloy and forged component

    公开(公告)号:US11987864B2

    公开(公告)日:2024-05-21

    申请号:US17577199

    申请日:2022-01-17

    CPC classification number: C22C23/02

    Abstract: A magnesium alloy matrix having an alloy composition including aluminum at a concentration of between 0.5 wt. % to 2.5 wt. %, manganese at a concentration of between 0.3 wt. % to 1.0 wt. %, the concentration of manganese is greater than or equal to a value of [Mn] determined by a linear function [Mn]=x[Al], where x is at least 0.6 when [Al]=0.5 and is at least 0.14 when [Al]=2.5, zinc at a concentration of between 0 wt. % to 3 wt. %, tin at a concentration of between 0 wt. % to 3 wt. %, calcium at a concentration of between 0 wt. % to 0.5%, rare earth metals at a concentration of between 0 wt. % to 5 wt. %, and a balance of the alloy composition being magnesium.

    METHOD TO FORM AXISYMMETRIC MAGNESIUM ARTICLE BY FORGING AND FLOW-FORMING PROCESS

    公开(公告)号:US20230050499A1

    公开(公告)日:2023-02-16

    申请号:US17481641

    申请日:2021-09-22

    Abstract: A method to form a magnesium article includes: heating materials including magnesium, aluminum, manganese and tin in a furnace to create an alloy having a composition of; the magnesium in an amount greater than or equal to 90% by weight of the materials; the aluminum ranging between approximately 2.0% up to approximately 4.0% by weight of the materials; the manganese ranging between approximately 0.43% up to approximately 0.6% by weight of the materials; and the tin ranging between approximately 1% up to approximately 3% by weight of the materials; chill casting the alloy to create a cast billet; and heating the cast billet at a temperature ranging from approximately 380° C. up to approximately 420° C. and maintaining the temperature for a time period between approximately 4 hours to 10 hours to homogenize element distribution.

Patent Agency Ranking