Abstract:
A battery system includes a plurality of battery cells and a battery system enclosure surrounded by an external environment. The battery system enclosure is configured to house the plurality of battery cells and includes an enclosure tray configured to support the plurality of battery cells and an enclosure cover configured to engage the enclosure tray and seal the battery system enclosure. The battery system also includes an exhaust manifold arranged between the plurality of battery cells and the enclosure cover. The exhaust manifold includes multiple individual gas paths in fluid communication with an exhaust outlet. The gas paths are configured to collect high-temperature gases from each of the plurality of battery cells and guide the high-temperature gases from each of the plurality of battery cells to the exhaust outlet. The exhaust outlet is configured to discharge the high-temperature gases distally from the plurality of battery cells.
Abstract:
An assembly such as a piston assembly for an engine includes a piston pin that has an outer member and a core. The outer member has a cavity extending lengthwise therethrough. The cavity has a first volume. The core is fit to the outer member in the cavity, and has a second volume less than the first volume. For example, the second volume may be less than the first volume because the core has an opening, because the core is shorter in length than the cavity, or both. A method of manufacturing a piston pin includes providing an outer member having a first density and a first length, creating a cavity that extends lengthwise through the outer member, providing a core having a second density and a second length, and inserting the core into the cavity of the outer member.
Abstract:
A variable compression ratio (VCR) phaser configured to control a compression ratio of an engine having a crankshaft and a control shaft. The variable compress ratio phaser comprises: i) a control shaft gear configured to mesh with a gear on the control shaft of the engine and to receive torque from the control shaft; ii) a crankshaft gear configured to mesh with a gear on the crankshaft of the engine and to deliver torque to the crankshaft; and iii) a torque conversion mechanism configured to receive torque from the control shaft and to convert the torque to a linear force that changes the compression ratio of the engine.
Abstract:
A variable compression ratio (VCR) phaser configured to control a compression ratio of an engine having a crankshaft and a control shaft. The variable compress ratio phaser comprises: i) a control shaft gear configured to mesh with a gear on the control shaft of the engine and to receive torque from the control shaft; ii) a crankshaft gear configured to mesh with a gear on the crankshaft of the engine and to deliver torque to the crankshaft; and iii) a torque conversion mechanism configured to receive torque from the control shaft and to convert the torque to a linear force that changes the compression ratio of the engine.
Abstract:
A internal combustion engine comprises an engine block defining a cylinder bore, and a piston slideably supported within the cylinder bore. The piston slides reciprocally within the cylinder bore throughout an engine cycle through a piston compression stroke having a compression stroke length and a piston expansion stroke having an expansion stroke length. A crankshaft is rotatably supported by the engine block and rotatable about a crank axis, and a drive gear is co-axially mounted on the crankshaft. A control shaft is rotatably supported by the engine block and rotatable about a control axis that is parallel to and distal from the crank axis. A driven gear is coaxially mounted on the control shaft. A link rod is rotatably connected to the crankshaft and rotatable relative to the crankshaft about an axis that is parallel to and distal from the crank axis. A lower connecting rod has a first end rotatably connected to the link rod, and a second end rotatably connected to the control shaft and is rotatable relative to the control shaft about an axis that is parallel to and distal from the control axis, and an upper connecting rod has a first end rotatably connected to the link rod, and a second end rotatably connected to the piston. A phasing device is supported by the engine block between and interconnecting the crankshaft and the control shaft, and includes an idler shaft rotatable about a phase axis, an electric motor adapted to rotate the idler shaft, a gearbox mounted co-axially on the idler shaft, a crank gear supported on the gearbox co-axial to the idler shaft, and a control shaft gear mounted co-axially on the idler shaft distal from the crank gear. The drive gear engages the crank gear and transfers rotation of the crank shaft to the idler shaft, and the driven gear engages the control shaft gear and transfers rotation of the idler shaft to the control shaft, and when the electric motor rotates the idler shaft, the gearbox is adapted to allow the rotational speed of the idler shaft to change relative to the rotational speed of the crank shaft to change the rotational speed of the control shaft relative to the crankshaft and change the clearance volume.
Abstract:
An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.
Abstract:
A internal combustion engine comprises an engine block defining a cylinder bore, and a piston slideably supported within the cylinder bore. The piston slides reciprocally within the cylinder bore throughout an engine cycle through a piston compression stroke having a compression stroke length and a piston expansion stroke having an expansion stroke length. A crankshaft is rotatably supported by the engine block and rotatable about a crank axis, and a drive gear is co-axially mounted on the crankshaft. A control shaft is rotatably supported by the engine block and rotatable about a control axis that is parallel to and distal from the crank axis. A driven gear is coaxially mounted on the control shaft. A link rod is rotatably connected to the crankshaft and rotatable relative to the crankshaft about an axis that is parallel to and distal from the crank axis. A lower connecting rod has a first end rotatably connected to the link rod, and a second end rotatably connected to the control shaft and is rotatable relative to the control shaft about an axis that is parallel to and distal from the control axis, and an upper connecting rod has a first end rotatably connected to the link rod, and a second end rotatably connected to the piston. A phasing device is supported by the engine block between and interconnecting the crankshaft and the control shaft, and includes an idler shaft rotatable about a phase axis, an electric motor adapted to rotate the idler shaft, a gearbox mounted co-axially on the idler shaft, a crank gear supported on the gearbox co-axial to the idler shaft, and a control shaft gear mounted co-axially on the idler shaft distal from the crank gear. The drive gear engages the crank gear and transfers rotation of the crank shaft to the idler shaft, and the driven gear engages the control shaft gear and transfers rotation of the idler shaft to the control shaft, and when the electric motor rotates the idler shaft, the gearbox is adapted to allow the rotational speed of the idler shaft to change relative to the rotational speed of the crank shaft to change the rotational speed of the control shaft relative to the crankshaft and change the clearance volume.
Abstract:
Disclosed are integrated exhaust manifold (IEM) cylinder heads, methods for making and methods for using IEM cylinder heads, and motor vehicles with an engine and IEM cylinder head assembly. Disclosed, for example, is an IEM cylinder head for a motor vehicle with an engine and an exhaust system. The IEM cylinder head includes a body that mounts to the engine's cylinder block. The cylinder head body integrally defines: multiple chamber surfaces each aligning with a cylinder bore and piston to define a combustion chamber; multiple exhaust ports each communicating with a cylinder bore to evacuate exhaust gas therefrom; multiple exit ports communicating with the exhaust system to evacuate exhaust gas from the cylinder head; and multiple exhaust runners each extending from an exhaust port to one exit port. These exhaust runners are fluidly isolated from each other to each transmit exhaust gases from a single one of the cylinder bores.
Abstract:
An engine assembly includes a crankshaft, a control shaft, a drive gear fixed to the crankshaft, a carrier, a first planetary gear set, an actuator, and a second planetary gear set. The first planetary gear set includes a first sun gear fixed to ground, a first ring gear engaged with the drive gear, and a first planet gear rotatably mounted on the carrier and engaged with the first ring gear and the first sun gear. The second planetary gear set includes a second sun gear fixed to the actuator, a second ring gear coupled with the control shaft, and a second planet gear rotatably mounted on the carrier and engaged with the second ring gear and the second sun gear. The actuator is operable to rotate the second sun gear and thereby adjust a ratio of a rotational speed of the crankshaft to a rotational speed of the control shaft.
Abstract:
An engine variable compression ratio arrangement can be equipped in an internal combustion engine. The engine variable compression ratio arrangement includes a planetary gear set. The planetary gear set receives rotational drive input from an engine crankshaft, and the planetary gear set transmits rotational drive output to an eccentric shaft. The rotational position of the eccentric shaft is shifted relative to the rotational position of the engine crankshaft by way of the planetary gear set. This shifting varies the compression ratio of the internal combustion engine.