Abstract:
Systems and methods for charging multiple rechargeable energy storage systems (“RESSs”) included in one or more vehicles using a single charging system are presented. In some embodiments, a method for charging one or more RESSs may include receiving an indication that one or more charging ports of a plurality of charging ports included in a charging system have RESSs coupled thereto. Based on the indication, a charging map may be generated. One or more charging parameters may be determined based on the generated charging map. Based on the charging parameters, a switching mechanism included in the charging system may be selectively actuated to provide electrical power from a charging power source to charging ports coupled to RESSs.
Abstract:
Methods and systems for balancing battery states of charge in a multi-sectioned battery. In some embodiments, states of health and states of charge of one or more sections of a multi-sectioned battery may be determined. A relationship between the states of charge and states of health of the battery sections may be determined. This information may be used apply a balancing algorithm to redistribute energy between the various battery sections in order to reduce a spread between the states of charge due to the varying states of health.
Abstract:
A system and method for discharging a high voltage vehicle battery. The system includes a discharge circuit having a reference voltage source providing a reference voltage and a load for discharging the battery. A negative terminal of the voltage source is electrically coupled to a negative terminal of the battery so that upon initiation of the discharging sequence, the battery is discharged through the load to the reference voltage. The discharge circuit can be electrically configured so that the battery, the voltage source and the load are electrically coupled in series or the battery, the voltage source and the load are electrically coupled in parallel.
Abstract:
System and methods for discharging a battery system in a vehicle are presented. In certain embodiments, a battery system included in a vehicle may include a high voltage cell stack and at least one access point configured to selectively couple the high voltage cell stack with a discharging system connector associated with a discharging system. The at least one access point may include a receptacle configured to receive the discharging system connector and selectively couple the discharging system connector across the high voltage cell stack to allow for electrical energy to be discharged from the cell stack to an external discharging system.