Photonic circulator for a LiDAR device

    公开(公告)号:US11639988B2

    公开(公告)日:2023-05-02

    申请号:US16814741

    申请日:2020-03-10

    摘要: An integrated photonic circulator is described, an application of which may be deployed on a chip-scale light-detection and ranging (LiDAR) device. The photonic circulator includes a micro-ring resonator waveguide, a heating element, first and second bus waveguides, a magneto-optic substrate, a magneto-optic element, a magnetic ring disposed on a photonic substrate, and a silicon substrate. The first and second bus waveguides are coupled to the micro-ring resonator waveguide, and the micro-ring resonator waveguide is affixed onto a first side of the photonic substrate. The magneto-optic element and the magneto-optic substrate are arranged on the micro-ring resonator waveguide, the magnetic ring is affixed to the magneto-optic substrate, the heating element is affixed to the photonic substrate, the photonic substrate is affixed to the silicon substrate, and the magnetic ring is concentric with the micro-ring resonator.

    Photonic circulator for a LiDAR device

    公开(公告)号:US11500072B2

    公开(公告)日:2022-11-15

    申请号:US16814575

    申请日:2020-03-10

    摘要: A photonic circulator deployed on a chip-scale light-detection and ranging (LiDAR) device includes a first arm that includes a first waveguide that is bonded onto a first member at a first bonding region, and a second arm that includes a second waveguide that is bonded onto a second member at a second bonding region. A first thermo-optic phase shifter is arranged on the first member and collocated with the first waveguide, and a second thermo-optic phase shifter is arranged on the second member and collocated with the second waveguide. The magneto-optic material and the first thermo-optic phase shifter of the first member cause a first phase shift in a first light beam travelling through the first waveguide, and the magneto-optic material and the second thermo-optic phase shifter of the second member cause a second phase shift in a second light beam travelling through the second waveguide.

    LIDAR DEVICE
    4.
    发明申请

    公开(公告)号:US20210124031A1

    公开(公告)日:2021-04-29

    申请号:US16814726

    申请日:2020-03-10

    摘要: An architecture for a chip-scale optical phased array-based scanning frequency-modulated continuous wave (FMCW) Light-detection and ranging (LiDAR) device is described. The LiDAR device includes a laser, a transmit optical splitter, an optical circulator, photodetectors, and an optical phased array. The laser, the transmit optical splitter, the optical circulator, the photodetectors, and the optical phased array are arranged as a chip-scale package on a single semiconductor substrate. The laser generates a first light beam that is transmitted to the optical phased array aperture via the transmit optical splitter, the optical circulator, and the optical phased array. A fraction of the first light beam is transmitted to the photodetectors via the transmit optical splitter to serve as the optical local oscillator (LO), the aperture of the optical phased array captures a second light beam that is transmitted to the photodetectors via the optical phased array and the optical circulator.

    LIDAR SYSTEM WITH INTEGRATED FREQUENCY SHIFTER FOR TRUE DOPPLER DETECTION

    公开(公告)号:US20200088878A1

    公开(公告)日:2020-03-19

    申请号:US16554866

    申请日:2019-08-29

    摘要: A vehicle, Lidar system and method of detecting an object is disclosed. The Lidar system includes a photonic chip having a laser, an on-chip frequency shifter, a combiner and a first set of photodetectors. The laser generates a transmitted light beam and an associated local oscillator beam within the photonic chip. The on-chip frequency shifter shifts a frequency of the local oscillator beam. The combiner combines a reflected light beam with the frequency-shifted local oscillator beam, wherein the reflected light beam is a reflection of the transmitted light beam from the object to generate a first electronic signal at the first set of photodetectors. A processor obtains a first measurement of a parameter of the object from the first electronic signal. The vehicle includes a navigation system for navigating the vehicle with respect to the object using at least the first measurement of the parameter.

    CALIBRATION AND ALIGNMENT OF COHERENT LIDAR SYSTEM

    公开(公告)号:US20190018121A1

    公开(公告)日:2019-01-17

    申请号:US16017278

    申请日:2018-06-25

    IPC分类号: G01S7/497 G01S17/93 G01S7/491

    摘要: A lidar system includes a light source to generate a frequency modulated continuous wave (FMCW) signal, and a waveguide splitter to split the FMCW signal into an output signal and a local oscillator (LO) signal. A transmit coupler provides the output signal for transmission. A receive lens obtains a received signal resulting from reflection of the output signal by a target. A waveguide coupler combines the received signal and the LO signal into a first combined signal and a second combined signal. A first phase modulator and second phase modulator respectively adjust a phase of the first combined signal and the second combined signal to provide a first phase modulated signal and a second phase modulated signal to a first photodetector and a second photodetector. A processor processes a first electrical signal and a second electrical signal from the first and second photodetectors to obtain information about the target.

    DUAL-LASER CHIP-SCALE LIDAR FOR SIMULTANEOUS RANGE-DOPPLER SENSING

    公开(公告)号:US20190018110A1

    公开(公告)日:2019-01-17

    申请号:US16018716

    申请日:2018-06-26

    摘要: A chip-scale lidar system includes a first light source to output a first signal, and a second light source to output a second signal. A transmit beam coupler provides an output signal for transmission that includes a portion of the first signal and a portion of the second signal, and receive beam coupler obtains a received signal resulting from reflection of the output signal by a target. The system includes a first and second set of photodetectors to obtain a first and second set of electrical currents from a first and second set of combined signals including a first and second portion of the received signal. A processor obtains Doppler information about the target from the second set of electrical currents and obtains range information about the target from the first set of electrical currents and the second set of electrical currents.