Abstract:
A method of simultaneously manufacturing a plurality of crankshafts includes positioning a core system having a plurality of individual cores within a cavity of a mold having first and second halves forming an exterior shape of the crankshafts. The crankshafts' exterior shape includes a plurality of pin bearing journals and a plurality of main bearing journals. Each of the cores passes through each of the crankshafts. At least one core passes through at least one of the pin bearing journals and at least one other core passes through at least one of the main bearing journals. The method also includes introducing into the cavity molten metal to form the crankshafts. As the metal flows into the cavity and around the plurality of cores, a hollow section extending through at least one of the pin bearing journals and at least one of the main bearing journals of each crankshaft is formed.
Abstract:
A multiple step method increases net tensile strengths of high pressure die cast (HPDC) aluminum components through an alloy- and process-dependent thermal treatment. The highest temperature feasible for solution treatment of an HPDC casting is determined by computational thermodynamics, kinetics and the gas laws based on the alloy composition and gas pressure in the finally solidified parts. Determining the maximum solution temperature involves mapping pressure in the bubbles of solidified material to avoid the formation of blisters by surface adjacent bubbles in the casting. To reduce residual tensile stress, the HPDC parts are air cooled after the solution treatment. Finally, a specific, multiple temperature aging cycle is utilized to improve the aging response of air cooled HPDC parts and increase net tensile strength.
Abstract:
Methods, systems, and apparatus for reduction of gas pressure within a core, such as a sand casting core package, during a casting process in order to reduce bubble defects. Some embodiments may comprise a mold configured to receive a molten metal to create a metal casting, such as an engine block casting. The mold may comprise a mold core configured to create a cavity within the metal casting. The system may further comprise a filling device configured for delivering a molten metal into the mold for creating the metal casting. The mold core may comprise a material that is permeable to certain gases known to often result in bubble defects. The system may further comprise a vacuum configured to be coupled with the mold to reduce gas pressure within a permeable portion of the mold in order to reduce the incidence of bubble defects within the casting.
Abstract:
Presented are crankshaft assemblies with internal stiffening structures, methods for making/using such crankshaft assemblies, and internal combustion engines equipped with such crankshaft assemblies. A crankshaft body, which is formed with a first material, includes multiple bearing journals that are mutually coaxial to rotate on a crankshaft axis and spaced from each other along the length of the crankshaft. Each bearing journal has an internal journal cavity. Multiple crankpins are longitudinally spaced from each and axially offset from the crankshaft's rotational axis. Each crankpin has an internal crankpin cavity. Multiple crank webs project radially from the crankshaft axis and interconnect the bearing journals with the crankpins. Each crank web has an internal web cavity. Disposed within the journal cavities, crankpin cavities, and/or web cavities is a stiffening bar formed with a second material having a modulus of elasticity that is greater than the modulus of elasticity of the first material.
Abstract:
A method of simultaneously manufacturing a plurality of crankshafts includes positioning a core system having a plurality of individual cores within a cavity of a mold having first and second halves forming an exterior shape of the crankshafts. The crankshafts' exterior shape includes a plurality of pin bearing journals and a plurality of main bearing journals. Each of the cores passes through each of the crankshafts. At least one core passes through at least one of the pin bearing journals and at least one other core passes through at least one of the main bearing journals. The method also includes introducing into the cavity molten metal to form the crankshafts. As the metal flows into the cavity and around the plurality of cores, a hollow section extending through at least one of the pin bearing journals and at least one of the main bearing journals of each crankshaft is formed.
Abstract:
A cylinder liner for an engine block that includes an inter-bore saw cut includes a first engine block bonding surface, and a second engine block bonding surface that has a lower level of bonding between the cylinder liner and an engine block than the first engine block bonding surface. The second engine block bonding surface extending from an axial end portion of the liner a distance greater than a depth of the saw cut in inter-bore section of the engine block.
Abstract:
A method for relieving residual stress in cast-in-place liners of high pressure die cast (HPDC) engine blocks to prevent cracking in the liners during the machining process. The method includes locally heating up the liners and the surrounding engine block material through rapid induction heating and then cooling down the liners and surrounding engine block material with still ambient air to a predetermined temperature after the residual stress has been reduced to a desired threshold.
Abstract:
A method of manufacturing an aluminum alloy cylinder head includes providing a mold assembly including a gating system, a head deck mold, and a mold cavity. Liquid aluminum alloy is pumped at low pressure into the gating system of the mold assembly filling the mold cavity. Next, the head deck mold is removed from the mold assembly and the head deck and combustion chambers of the cylinder head are quenched.
Abstract:
A method of simultaneously manufacturing a plurality of crankshafts includes positioning a single core within a cavity of a mold having a first half and a second half together forming an exterior shape of the plurality of crankshafts. The exterior shape of each of the plurality of crankshafts produced thereby includes a plurality of pin bearing journals and a plurality of main bearing journals. The method also includes introducing via a mechanism into the cavity a molten metal to form the plurality of crankshafts. As the molten metal flows into the cavity and around the single core, a hollow section extending through at least one of the plurality of pin bearing journals and at least one of the plurality of main bearing journals of each of the plurality of crankshafts is formed. A system for simultaneously manufacturing a plurality of reduced mass crankshafts using the above method is also disclosed.