Abstract:
In accordance with an exemplary embodiment, methods and systems are provided for controlling automatic overtake functionality for a host vehicle. In on such exemplary embodiment, a disclosed method includes: (i) obtaining, via a plurality of sensors, sensor data pertaining to the host vehicle and a roadway on which the host vehicle is traveling; (ii) determining, via a processor, when an automatic overtake is recommended, using the sensor data in conjunction with one or more threshold values; (iii) receiving driver inputs pertaining to the automatic overtake; and (iv) adjusting, via the processor, the one or more threshold values for the automatic overtake based on the driver inputs.
Abstract:
In accordance with an exemplary embodiment, methods and systems are provided for controlling automatic overtake functionality for a host vehicle. In on such exemplary embodiment, a disclosed method includes: (i) obtaining, via a plurality of sensors, sensor data pertaining to the host vehicle and a roadway on which the host vehicle is traveling; (ii) determining, via a processor, when an automatic overtake is recommended, using the sensor data in conjunction with one or more threshold values; (iii) receiving driver inputs pertaining to the automatic overtake; and (iv) adjusting, via the processor, the one or more threshold values for the automatic overtake based on the driver inputs.
Abstract:
A system includes first and second modules of a vehicle. The first module stores at least one seed value, calculates a key based on the at least one seed value, forms a seed key pair based on the calculated key and the at least one seed value, generates a data bus message including the seed key pair and data corresponding to operation of the first module, and transmits, over a distributed vehicle network, the data bus message. The second module receives the data bus message over the distributed vehicle network, retrieves the seed key pair from the data bus message, determines whether the calculated key matches an expected key, and selectively verifies integrity of the first module based on the determination of whether the calculated key matches the expected key.
Abstract:
Methods and systems are provided for providing fault notifications for vehicles. A notification unit is configured to provide a notification when a fault is detected for a vehicle. A processor is coupled to the notification unit, and is configured to provide instructions to the notification unit to provide the notification when the fault is detected, and restrict operation of the vehicle, when the fault is detected, until an action is taken in response to the notification.
Abstract:
A system includes first and second modules of a vehicle. The first module stores at least one seed value, calculates a key based on the at least one seed value, forms a seed key pair based on the calculated key and the at least one seed value, generates a data bus message including the seed key pair and data corresponding to operation of the first module, and transmits, over a distributed vehicle network, the data bus message. The second module receives the data bus message over the distributed vehicle network, retrieves the seed key pair from the data bus message, determines whether the calculated key matches an expected key, and selectively verifies integrity of the first module based on the determination of whether the calculated key matches the expected key.
Abstract:
A position diagnostic test for a shift-by-wire system is provided. The shift-by-wire system includes a shift lever configured to move along a shift path, a first and a second position sensor configured to generate a first and a second position signal, respectively, of the shift lever along the shift path, and a controller configured to receive the first and second position signals. The first position sensor includes a first x-coordinate value and a first y-coordinate value, and the second position sensor includes a second x-coordinate value and a second y-coordinate value. The position diagnostic test includes performing a rationality test on each of the coordinate values. If at least one predetermined condition exists for a particular coordinate value, then it fails the rationality test, and the position signal containing the coordinate value may be disregarded.
Abstract:
A position diagnostic test for a shift-by-wire system is provided. The shift-by-wire system includes a shift lever configured to move along a shift path, a first and a second position sensor configured to generate a first and a second position signal, respectively, of the shift lever along the shift path, and a controller configured to receive the first and second position signals. The first position sensor includes a first x-coordinate value and a first y-coordinate value, and the second position sensor includes a second x-coordinate value and a second y-coordinate value. The position diagnostic test includes performing a rationality test on each of the coordinate values. If at least one predetermined condition exists for a particular coordinate value, then it fails the rationality test, and the position signal containing the coordinate value may be disregarded.