Abstract:
A coated article includes a coating, such as a low emissivity (low-E) coating, supported by a substrate (e.g., glass substrate). The coating includes at least one dielectric layer including zinc oxide that is doped with another metal(s). The coating may also include one or more infrared (IR) reflecting layer(s) of or including material such as silver or the like, for reflecting at least some IR radiation. In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered, heat bent and/or heat strengthened). Coated articles according to certain example embodiments of this invention may be used in the context of windows, including monolithic windows for buildings, IG windows for buildings, etc.
Abstract:
This invention relates to a coated article including a low-emissivity (low-E) coating. In certain example embodiments, the low-E coating is provided on a substrate (e.g., glass substrate) and includes at least first and second infrared (IR) reflecting layers (e.g., silver based layers) that are spaced apart by contact layers (e.g., NiCr based layers) and a dielectric layer of or including a material such as silicon nitride. In certain example embodiments, the coated article has a low visible transmission (e.g., no greater than 50%, more preferably no greater than about 40%, and most preferably no greater than about 39%).
Abstract:
An IG window unit includes a coating supported by a glass substrate. The coating from the glass substrate outwardly comprising at least the following: a dielectric layer comprising silicon nitride; a dielectric layer comprising an oxide of titanium; another dielectric layer; a layer comprising zinc oxide; an infrared (IR) reflecting layer comprising silver on the glass substrate, located over and directly contacting the layer comprising zinc oxide, wherein the coating includes only one IR reflecting layer; a layer comprising an oxide of Ni and/or Cr located over and directly contacting the IR reflecting layer comprising silver; and an overcoat comprising (i) a layer comprising tin oxide located over the layer comprising the oxide of Ni and/or Cr and (ii) a layer comprising silicon nitride located over and contacting the layer comprising tin oxide.
Abstract:
This invention relates to a coated article including a low-emissivity (low-E) coating. In certain example embodiments, the low-E coating is provided on a substrate (e.g., glass substrate) and includes at least first and second infrared (IR) reflecting layers (e.g., silver based layers) that are spaced apart by contact layers (e.g., NiCr based layers) and a dielectric layer of or including a material such as silicon nitride. In certain example embodiments, the coated article has a low visible transmission (e.g., no greater than 50%, more preferably no greater than about 40%, and most preferably no greater than about 39%).
Abstract:
A coated article includes a coating, such as a low emissivity (low-E) coating, supported by a substrate (e.g., glass substrate). The coating includes at least one dielectric layer including tin oxide that is doped with another metal(s). The coating may also include one or more infrared (IR) reflecting layer(s) of or including material such as silver or the like, for reflecting at least some IR radiation. In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered, heat bent and/or heat strengthened). Coated articles according to certain example embodiments of this invention may be used in the context of windows, including monolithic windows for buildings, IG windows for buildings, etc.
Abstract:
An insulating glass (IG) window unit includes first and second substrates, and a low-emissivity (low-E) coating supported by one of the substrates. The low-E coating has two silver based infrared (IR) reflecting layers and allows the IG window unit to realize an increased SHGC to U-value ratio, and an increased thickness ratio of an upper silver based layer of the coating to a bottom silver based layer of the coating. The low-E coating is designed to have a low film-side reflectance, so that for example when the low-E coating is used on surface number three of an IG window unit the IG window unit can realize reduced visible reflectance as viewed from the outside of the building on which the IG window unit is mounted or is to be mounted.
Abstract:
An insulating glass (IG) window unit includes first and second substrates, and a low-emissivity (low-E) coating supported by one of the substrates. The low-E coating has two silver based infrared (IR) reflecting layers and allows the IG window unit to realize an increased SHGC to U-value ratio, and an increased thickness ratio of an upper silver based layer of the coating to a bottom silver based layer of the coating. The low-E coating is designed to have a low film-side reflectance, so that for example when the low-E coating is used on surface number three of an IG window unit the IG window unit can realize reduced visible reflectance as viewed from the outside of the building on which the IG window unit is mounted or is to be mounted.
Abstract:
A coated article includes a coating, such as a low emissivity (low-E) coating, supported by a substrate (e.g., glass substrate). The coating includes at least one dielectric layer including zinc oxide that is doped with another metal(s). The coating may also include one or more infrared (IR) reflecting layer(s) of or including material such as silver or the like, for reflecting at least some IR radiation. In certain example embodiments, the coated article may be heat treated (e.g., thermally tempered, heat bent and/or heat strengthened). Coated articles according to certain example embodiments of this invention may be used in the context of windows, including monolithic windows for buildings, IG windows for buildings, etc.
Abstract:
A method for making low emissivity panels, including control the composition of a barrier layer formed on a thin conductive silver layer. The barrier structure can include an alloy of a first element having high oxygen affinity with a second element having low oxygen affinity. The first element can include Ta, Nb, Zr, Hf, Mn, Y, Si, and Ti, and the second element can include Ru, Ni, Co, Mo, and W, which can have low oxygen affinity property. The alloy barrier layer can reduce optical absorption in the visible range, can provide color-neutral product, and can improve adhesion to the silver layer.
Abstract:
A coated article includes a low emissivity (low-E) coating on a glass substrate. The low-E coating includes at least one infrared (IR) reflecting layer of a material such as silver, gold, or the like, and at least one high refractive index layer of or including NbBi. The high index layer (e.g., NBBiOx) is designed and deposited so as to be amorphous in the low-E coating, so as to better withstand optional heat treatment (HT) such as thermal tempering. The high index layer may be a transparent dielectric high index layer.