Abstract:
In an H-ARQ system, when the AN is receiving packet data traffic on the RL from an AT and is generating ACKs and NAKs according to the ability of the AN to properly decode such data, the AN gates-off a DRCLock bit within in a sub-packet duration in which an ACK is transmitted on the FL MAC channel. When it receives an ACK, the AT ignores the non-transmitted DRCLock bit in a current sub-packet duration, and assumes that the DRC channel is “good”. When the AN sends a NAK to the AT, it also sends the DRCLock bit. When the AT receives a NAK in a sub-packet duration, it reads and processes whatever DRCLock bit is received during that sub-packet duration. When no data traffic is transmitted on the RL traffic channel, corresponding DRCLock bits are not gated-off by the AN and are transmitted to the AT. The AT then processes the received DRCLock bits. In an alternative embodiment, transmission of DRCLock is totally eliminated.
Abstract:
In an H-ARQ system, when the AN is receiving packet data traffic on the RL from an AT and is generating ACKs and NAKs according to the ability of the AN to properly decode such data, the AN gates-off a DRCLock bit within in a sub-packet duration in which an ACK is transmitted on the FL MAC channel. When it receives an ACK, the AT ignores the non-transmitted DRCLock bit in a current sub-packet duration, and assumes that the DRC channel is “good”. When the AN sends a NAK to the AT, it also sends the DRCLock bit. When the AT receives a NAK in a sub-packet duration, it reads and processes whatever DRCLock bit is received during that sub-packet duration. When no data traffic is transmitted on the RL traffic channel, corresponding DRCLock bits are not gated-off by the AN and are transmitted to the AT. The AT then processes the received DRCLock bits. In an alternative embodiment, transmission of DRCLock is totally eliminated.
Abstract:
In an H-ARQ system, when transmission on the FL MAC channel of DRCLock or CQILock bits is eliminated, other feedback information carried by the FL MAC channel is used as an RL quality indication for determining at least in part when to make a serving sector switch from a current serving sector to a non-serving sector in its active set. In particular, when data traffic is present, the ACKs/NAKs fed back to the AT on the FL MAC channel are used at least in part in determining when to make such a serving sector switch. In systems operating in accordance with CDMA2000 EVDO RevA/RevB standards, for example, this information is used in conjunction with quality measurements on the FL in determining when to make a serving sector switch. In future systems operating in accordance with CDMA2000 EVDO RevC standards currently under development in which the RL can be switched independently of the FL, this information is directly used to determine when to make an RL serving sector switch.
Abstract:
At least one example embodiment discloses a method of controlling a handover of a user equipment (UE) from a serving base station to a target base station in a heterogeneous network. The method includes determining, by a serving base station, a speed of the UE and a type of the handover, the type of the handover being one of macro cell to macro cell, macro cell to small cell, small cell to macro cell and small cell to small cell, and controlling, by the serving base station, the handover from the serving base station to the target base station based on the speed of the UE and the type of handover.
Abstract:
The number of Reverse Activity Bits (RABs) equal to “1” per frame is a Congestion Overload (CO) metric used to determine whether the reverse link in a wireless communications system is in a congestion overload state due to a reverse link RF overload. When the value of the CO metric exceeds a first predetermined threshold that is indicative of a congestion overload condition, the system enters a block state where all new connection requests are blocked. Once in the block state, if the value of the CO metric does not decrease but continues to increase and exceeds a second higher threshold, the system enters a mute state. In the mute state a predetermined large percentage of existing active calls are muted. Specifically, a message is sent downlink to specific ATs instructing them to reduce their transmission rates to zero but to still maintain their active connections.
Abstract:
The apparatus includes a processor. The processor is configured to determine whether to redistribute traffic, generate a message upon determining traffic is to be redistributed, the message including cell priority values, the cell priority values including a priority value for each of a plurality of carriers, and transmit the message to the one or more user equipment.
Abstract:
The invention relates to a method of implementing resource scheduling for MTC devices, the base station assigns multiple machine type communication (MTC) devices to a group, and allocates to each device a sequence number of the group respectively, informs each corresponding device of the sequence number of the device, allocates a resource set for the group, and transmits indication information, indicating the resource set, to each device via broadcast signaling, wherein, the sequence number is used to indicate the resource, in the resource set, used by the device. A MTC device determines the resource, in the resource set, used by the device based on the sequence number. The embodiment of the invention can save the overhead of MTC resource scheduling.
Abstract:
The apparatus includes a processor. The processor is configured to determine whether to redistribute traffic, generate a message upon determining traffic is to be redistributed, the message including cell priority values, the cell priority values including a priority value for each of a plurality of carriers, and transmit the message to the one or more user equipment.
Abstract:
A method is provided a wireless system for providing an interference suppression zone in a portion of the macro cell coverage area bordering the small-cell coverage area for a small cell, but outside that small-cell coverage area. The transmission power of a UE located within the interference suppression zone is minimized to minimize the inter-cell interference to the small cells. The invention methodology further operates to enhance the redirection/redistribution methods of the art for UEs located in the interference suppression zone, further reducing macro to small cell interference. In further embodiments of the invention, methods are provided for determining the scope of an interference suppression zone and for determining proximity of an UE to the interference suppression zone.
Abstract:
The present invention provides a method of providing a group paging message. One embodiment of the method includes providing a first message during a first portion of a predetermined time period. The first message includes information indicating a second portion of the predetermined time period during which at least one idle first mobile unit is to wake up and attempt to receive a second message from the base station(s). The embodiment of the method also includes providing a third message during a third portion of the predetermined time period. The third message includes information indicating the second portion of the predetermined time period during which at least one idle second mobile unit is to wake up and attempt to receive the second message. The third portion of the predetermined time period is different than the first portion.