Abstract:
A method is provided a wireless system for providing small “guard” cells in a heterogeneous network at locations proximate to privately-maintained HeNB (or femto) cells in the heterogeneous network. More particularly, the methodology of the invention addresses the problem of a mobile user in a heterogeneous network located nearby to a privately maintained HeNB cell in the heterogeneous network, and the inherent interference created for the HeNB cell by the necessity of the mobile user having to transmit and receive communications from a distant public macro eNB. By deploying small public “guard” cells in the macro cell proximate to the private HeNB cells, such a public mobile terminal is enabled to communicate with the public small cell at generally lower power than would have been necessary for communication with the distant macro eNB, with a resulting reduction in interference for the nearby HeNB cell. The FL interference between the macro cell and the HeNBs is also mitigated.
Abstract:
A local gateway and router device is configured to route uplink IP packets from a base station to a network element of a wireless local area network (WLAN) by configuring an IP route for the uplink IP packets based on a source IP address of the uplink IP packets. The source IP address is obtained from the WLAN; the uplink IP packets originate from a user equipment application having the source IP address; and the uplink IP packets have an indicator indicating that the uplink IP packets were received at the base station over a cellular link between the user equipment and the base station.
Abstract:
At least one example embodiment discloses a method of controlling direct user equipment communications. The method includes receiving reports from a first user equipment (UE) and a second UE, respectively, the first and second UEs communicating with a serving base station, determining at least one control channel and at least one data channel for a direct communication between the first UE and the second UE, allocating at least one resource block for the direct communication link between the first UE and the second UE based on the determining and transmitting a configuration message to the first UE and the second UE, the configuration message indicating the allocated resource block and permitting at least one of the first UE and the second UE to determine parameters of the direct communication link.
Abstract:
A radio access network element includes a base station configured to: allocate, based on received radio link measurement information, at least a first portion of downlink packet data convergence protocol (PDCP) packets received at the base station for delivery to a user equipment over a wireless local area network (WLAN) link between a WLAN access point and the user equipment, the received radio link measurement information being indicative of at least one of a WLAN link quality and a loading of the WLAN link; and output the first portion of the received downlink PDCP packets to the WLAN access point for delivery to the user equipment over the WLAN link.
Abstract:
A local gateway and router device is configured to route uplink IP packets from a base station to a network element of a wireless local area network (WLAN) by configuring an IP route for the uplink IP packets based on a source IP address of the uplink IP packets. The source IP address is obtained from the WLAN; the uplink IP packets originate from a user equipment application having the source IP address; and the uplink IP packets have an indicator indicating that the uplink IP packets were received at the base station over a cellular link between the user equipment and the base station.
Abstract:
Example embodiments are directed to a method including transmitting, by a small cell, a pilot signal to a user equipment (UE) based on a first training signal received from the UE, and receiving, by the small cell, a second training signal from the UE. The second training signal is offset by a time based on the pilot signal transmitted by the small cell. The time offset represents a difference in time between the UE receiving a reference signal transmitted by a macro cell and the UE receiving the pilot signal transmitted by the small cell. The small cell adjusts a local reference timing based on the second training signal.
Abstract:
Successfully decoded data received from a mobile terminal as well as the transmission format of that data is relayed over the backhaul from a base station receiver that successfully decoded the mobile terminal's transmission to the base stations in the mobile terminal's active set that presumably were unable to decode the mobile terminal's transmission due to inadequate signal-to-noise ratio. A base station that receives this transmission from the relaying base station that did'successfully decode and demodulate the mobile terminal's transmission is then able to reconstruct the data and subtract it from the total interference, thereby increasing the signal-to-noise ratio at this base station for its in-cell processing.
Abstract:
At least one example embodiment discloses a method of controlling communications between first and second user equipments (UEs) by a base station in a network. The method includes obtaining an indication, the indication indicating if the first and second UEs are within a communication range of each other and controlling a direct communication link between the first and second UEs if the first and second UEs are within a communication range of each other. The controlling includes allocating at least a first portion of an uplink channel of the network to the direct communication link.
Abstract:
The present invention provides embodiments of methods for directing traffic between cells of different sizes. One embodiment of the method includes determining, at a mobile unit, whether to hand off from a source cell to a target cell based on information indicating sizes of coverage areas of the source cell and the target cell.
Abstract:
One embodiment of the method of estimating mobility of a user equipment includes obtaining location information of at least one base station that participated in a handover of the user equipment, and estimating a mobility of the user equipment based on the obtained location information.