摘要:
Transmission systems, assemblies, and components are described. In particular, aspects of the present disclosure relate to an infinitely variable transmission that maintains constant tooth engagement during changes in gear ratio. In one aspect, a transmission includes an axially movable sheave coupled to a chain. The sheave rotates around a drive axis. At least partially within the sheave is a set of moon gears. The moon gears orbit around the drive axis and are rotatable around respective internal axis. As the sheave moves axially, the chain and the set of moon gears move radially to define different gear ratios, with the gear ratios being changeable in infinitely small increments. A synchronization system moves the set of moon gears radially to correspond to the axial position of the sheave. A correction system optionally controls rotation of the moon gears to rotate teeth of the moon gears into alignment with the chain.
摘要:
A moon gear assembly is provided that includes a moon arm assembly having a driving moon gear. A pivot pin is connected to the moon arm assembly, and an adjustment arm is connected to the moon arm assembly. The moon arm assembly may also include a body that defines a chamber, a worm gear disposed in the chamber and arranged to interact with the driving moon gear, and a motor disposed in the chamber and couple to the worm gear.
摘要:
In one example, a moon gear assembly is provided that includes a moon arm assembly having a driving moon gear. A pivot pin is connected to the moon arm assembly, and an adjustment arm is connected to the moon arm assembly.
摘要:
In one example, a transmission is provided that includes a sheave of selectively variable configuration, a driven member configured to engage the sheave, and a plurality of drive members configured for radial movement to selectively engage the driven member. The transmission may be operable in one or more of the following modes: traction mode, integer mode, IN mode, and infinite mode.
摘要:
Disclosed are systems, assemblies, and components that relate to power transfer. In particular, the disclosed systems includes a transmission that offers variable speeds and changes between different gear ratios while maintaining constant engagement. Constant engagement may be maintained by tooth-to-tooth contact to be scalable for a variety of applications. An example system includes a phase shifting mechanism. The phase shifting mechanism may include an eccentric gear that provides an oscillating output. The oscillating output creates an overall gear ratio change that slides between gear ratios, thereby allowing changes to occur in small, and possibly infinitely small increments. According to one example, an eccentric gear has a changing base radius and includes a tooth with a hybrid profile that has a base the width of an initial profile, and a width at a top of the tooth that is that of a final profile.
摘要:
A transmission apparatus for changing the speed of a driven member relative to the speed of a driving member without interrupting the torque transfer between the members. The apparatus includes reducing gears driven by a driving member, annular cam gears in continuous engagement with the reducing gears, and a driven member which journals the cam gears for rotation. One section of the driven member is hollow and has a plurality of radially extending apertures each containing a reciprocating detent for engaging an inner cam surface or a corresponding cam gear. A shift member mounts within the bore of the driven member and moves along the rotational axis of the driven member to cause the detents to reciprocate between a cam gear engaged position and a disengaged position. By timing the movement of the shift member and the design of the cam surfaces on the cam gear, one cam gear can be simultaneously engaged while another is being disengaged to produce a gear ratio change without interrupting torque transfer between the driving and driven members.
摘要:
The present invention relates to transmission systems and changing gear ratios within power transmission systems. In particular, the present invention relates to a positive displacement variable speed transmission. The transmission includes one or more drive gears which orbit, rotate, and which translate radially to change the size of the orbital path. The change in the orbital path increases or decreases the linear velocity of the drive gears which engage one or more driven gears and transfer the changed linear velocity in the form of a gear ratio change. The driven gears are also radially movable and movement of the driven gears is synchronized with the radial movement of the drive gears to maintain substantially constant engagement between gear ratios change. Thus, as the drive and driven gears can slide or step radially to any location within a range of positions, gear ratio changes can be made in very small increments.
摘要:
The present invention relates to transmission systems and changing gear ratios within power transmission systems. In particular, the present invention relates to a positive displacement variable speed transmission. The transmission includes one or more drive gears which orbit, rotate, and which translate radially to change the size of the orbital path. The change in the orbital path increases or decreases the linear velocity of the drive gears which engage one or more driven gears and transfer the changed linear velocity in the form of a gear ratio change. The driven gears are also radially movable and movement of the driven gears is synchronized with the radial movement of the drive gears to maintain substantially constant engagement between gear ratios change. Thus, as the drive and driven gears can slide or step radially to any location within a range of positions, gear ratio changes can be made in very small increments.
摘要:
Quaternary ammonium salts prepared by reacting an alkenylsuccinimide with a monocarboxylic acid ester provide improved dispersancy in lubricating oils, as compared with the starting alkenylsuccinimides.
摘要:
The present invention relates to transmission systems and changing gear ratios within power transmission systems. In particular, the present invention relates to a positive displacement variable speed transmission. The transmission includes one or more drive gears which orbit, rotate, and which translate radially to change the size of the orbital path. The change in the orbital path increases or decreases the linear velocity of the drive gears which engage one or more driven gears and transfer the changed linear velocity in the form of a gear ratio change. The driven gears are also radially movable and movement of the driven gears is synchronized with the radial movement of the drive gears to maintain substantially constant engagement between gear ratios change. Thus, as the drive and driven gears can slide or step radially to any location within a range of positions, gear ratio changes can be made in very small increments.