摘要:
The locus of electrically excitable tissue where action potentials are induced can be controlled using the physiological principle of electrotonus. In one embodiment, first and second pulses are applied to first and second electrodes, respectively, to generate first and second subthreshold potential areas, respectively, within the tissue. The locus within the tissue where action potentials are induced is determined by a superposition of the first and second subthreshold areas according to the physiological principle of electrotonus. In another embodiment, a two-dimensional array of electrodes are formed. The cathode may be positioned near the center of the two-dimensional array or may be left out. The first and second subthreshold areas may thereby be steered. An array of anodal rings may be used to contain the field of excitation.
摘要:
The locus of electrically excitable tissue where action potentials are induced can be controlled using the physiological principle of electrotonus. In one embodiment, first and second pulses are applied to first and second electrodes, respectively, to generate first and second subthreshold potential areas, respectively, within the tissue. The locus within the tissue where action potentials are induced is determined by a superposition of the first and second subthreshold areas according to the physiological principle of electrotonus. In another embodiment, a two-dimensional array of electrodes are formed. The cathode may be positioned near the center of the two-dimensional array or may be left out. The first and second subthreshold areas may thereby be steered. An array of anodal rings may be used to contain the field of excitation.
摘要:
The locus of electrically excitable tissue where action potentials are induced can be controlled using the physiological principle of electrotonus. In one embodiment, first and second pulses are applied to first and second electrodes, respectively, to generate first and second subthreshold potential areas, respectively, within the tissue. The locus within the tissue where action potentials are induced is determined by a superposition of the first and second subthreshold areas according to the physiological principle of electrotonus. In another embodiment, a two-dimensional array of electrodes are formed. The cathode may be positioned near the center of the two-dimensional array or may be left out. The first and second subthreshold areas may thereby be steered. An array of anodal rings may be used to contain the field of excitation.
摘要:
The locus of electrically excitable tissue where action potentials are induced can be controlled using the physiological principle of electrotonus. In one embodiment, first and second pulses are applied to first and second electrodes, respectively, to generate first and second subthreshold potential areas, respectively, within the tissue. The locus within the tissue where action potentials are induced is determined by a superposition of the first and second subthreshold areas according to the physiological principle of electrotonus. In another embodiment, a two-dimensional array of electrodes are formed. The cathode may be positioned near the center of the two-dimensional array or may be left out. The first and second subthreshold areas may thereby be steered. An array of anodal rings may be used to contain the field of excitation.
摘要:
Apparatus and method for independently delivering a plurality of therapy programs in an implantable medical device. A therapy controller configures the device to generate independent pulse trains associated with a plurality of therapy programs and dynamically configures the electrodes to deliver the independent pulse trains to the patient. Once configured, the implantable medical device delivers the plurality of therapy programs to the patient wherein the therapy programs may overlap in time.
摘要:
Apparatus and method for independently delivering a plurality of therapy programs in an implantable medical device. A therapy controller configures the device to generate independent pulse trains associated with a plurality of therapy programs and dynamically configures the electrodes to deliver the independent pulse trains to the patient. Once configured, the implantable medical device delivers the plurality of therapy programs to the patient wherein the therapy programs may overlap in time.
摘要:
A pacing system and method for providing multiple chamber pacing of a patient's heart, and in particular, pacing programmed for treatment of various forms of heart failure. The system utilizes impedance sensing for determining optimum pacing parameters, e.g., for pacing the left ventricle so that left heart output is maximized. The impedance sensing also is used for determination of arrhythmias or progression of heart failure. Impedance sensing is provided for between selected pairs of the four chambers, to enable optimizing of information for control and diagnosis. In a preferred embodiment of the invention, impedance measurements are obtained for determining the timing of right heart valve closure or right ventricular contractions, and the timing of delivery of left ventricular pace pulses is adjusted so as to optimally synchronize left ventricular pacing with the right ventricular contractions. Impedance sensing in the left heart also provides timing of mechanical contraction, and the pacemaker controls pacing to maintain bi-ventricular mechanical synchronization adjusted for maximum cardiac output.
摘要:
A pacing system and method for providing multiple chamber pacing of a patient's heart, and in particular, pacing programmed for treatment of various forms of heart failure. The system utilizes impedance sensing for determining optimum pacing parameters, e.g., for pacing the left ventricle so that left heart output is maximized. The impedance sensing also is used for determination of arrhythmias or progression of heart failure. Impedance sensing is provided for between selected pairs of the four chambers, to enable optimizing of information for control and diagnosis. In a preferred embodiment, impedance measurements are obtained for determining the timing of right heart valve closure or right ventricular contractions, and the timing of delivery of left ventricular pace pulses is adjusted so as to optimally synchronize left ventricular pacing with the right ventricular contractions. Impedance sensing in the left heart also provides timing of mechanical contraction, and the pacemaker controls pacing to maintain bi-ventricular mechanical synchronization adjusted for maximum cardiac output.
摘要:
Apparatus and method provide flexibility in generating a stimulation waveform to an electrode of an Implantable Neuro Stimulator (INS). The stimulation waveform is synthesized for each rate period interval. Each rate period interval is partitioned into time intervals, during which stimulation pulses, recharging, and time duration delays may be induced. With the embodiment of the invention, a second stimulation pulse, having different electrical characteristics than a first stimulation pulse, may be generated during the rate period interval. An embodiment utilizes apparatus comprising a waveform controller and a waveform generator that are controlled by the waveform controller. The waveform controller uses waveform parameters to instruct the waveform generator to form stimulation pulses. Any of the components may be adjusted or deleted in the generation of the stimulation waveform. The embodiment enables any of the associated waveform parameters to be updated at the waveform controller in order to alter the stimulation waveform.
摘要:
A pacing system and method for providing multiple chamber pacing of a patient's heart, and in particular, pacing programmed for treatment of various forms of heart failure. The system utilizes impedance sensing for determining optimum pacing parameters, e.g., for pacing the left ventricle so that left heart output is maximized. The impedance sensing also is used for determination of arrhythmias or progression of heart failure. Impedance sensing is provided for between selected pairs of the four chambers, to enable optimizing of information for control and diagnosis. In a preferred embodiment of the invention, impedance measurements are obtained for determining the timing of right heart valve closure or right ventricular contractions, and the timing of delivery of left ventricular pace pulses is adjusted so as to optimally synchronize left ventricular pacing with the right ventricular contractions. Impedance sensing in the left heart also provides timing of mechanical contraction, and the pacemaker controls pacing to maintain bi-ventricular mechanical synchronization adjusted for maximum cardiac output.