摘要:
A method for fabricating a magnetic head includes forming a first pole and a flux shaping layer in spaced relation to the first pole. A nonmagnetic layer is formed adjacent the flux shaping layer and positioned on an air bearing surface (ABS) side of the flux shaping layer. A tapered recess is created in the nonmagnetic layer, the taper of the recess increasing (i.e., becoming deeper) towards the flux forming layer. The recess is filled with a magnetic material. A probe layer is formed such that it is in electrical communication with the magnetic material filling the recess.
摘要:
A method for fabricating a magnetic head includes forming a first pole and a flux shaping layer in spaced relation to the first pole. A nonmagnetic layer is formed adjacent the flux shaping layer and positioned on an air bearing surface (ABS) side of the flux shaping layer. A tapered recess is created in the nonmagnetic layer, the taper of the recess increasing (i.e., becoming deeper) towards the flux forming layer. The recess is filled with a magnetic material. A probe layer is formed such that it is in electrical communication with the magnetic material filling the recess.
摘要:
A method for fabricating a magnetic head includes forming a first pole and a flux shaping layer in spaced relation to the first pole. A nonmagnetic layer is formed adjacent the flux shaping layer and positioned on an air bearing surface (ABS) side of the flux shaping layer. A tapered recess is created in the nonmagnetic layer, the taper of the recess increasing (i.e., becoming deeper) towards the flux forming layer. The recess is filled with a magnetic material. A probe layer is formed such that it is in electrical communication with the magnetic material filling the recess.
摘要:
A method for fabricating a magnetic head includes forming a first pole and a flux shaping layer in spaced relation to the first pole. A nonmagnetic layer is formed adjacent the flux shaping layer and positioned on an air bearing surface (ABS) side of the flux shaping layer. A tapered recess is created in the nonmagnetic layer, the taper of the recess increasing (i.e., becoming deeper) towards the flux forming layer. The recess is filled with a magnetic material. A probe layer is formed such that it is in electrical communication with the magnetic material filling the recess.
摘要:
A perpendicular recording write head has ferromagnetic first and second pole pieces which are connected at a back gap and an insulation stack with a write coil layer embedded therein is located between the first and second pole pieces and between a head surface of the write head and the back gap. The second pole piece has a pole tip which is located at the head surface and a recessed ferromagnetic write shield layer. A nonmagnetic isolation layer is located between the second pole piece and the write shield layer and at least one ferromagnetic stud is magnetically connected between the first pole piece layer and the write shield layer and is located between the head surface and the insulation stack.
摘要:
A perpendicular recording write head has ferromagnetic first and second pole pieces which are connected at a back gap and an insulation stack with a write coil layer embedded therein is located between the first and second pole pieces and between a head surface of the write head and the back gap. The second pole piece has a pole tip which is located at the head surface and a recessed ferromagnetic write shield layer. A nonmagnetic isolation layer is located between the second pole piece and the write shield layer and at least one ferromagnetic stud is magnetically connected between the first pole piece layer and the write shield layer and is located between the head surface and the insulation stack.
摘要:
A method of fabrication of the write head of a perpendicular recording head allows for production of P3 pole tips of width less than 200 nm (200×10−9 meters). The method includes fabricating the P2 flux shaping layer, depositing the P3 layer, depositing a layer of ion-milling resistant material, depositing at least one sacrificial layer, shaping the P3 layer into P3 pole tip, removing the at least one sacrificial layer to leave the P3 pole tip, and encapsulating the P3 pole tip.
摘要:
A method and apparatus for providing a reverse air bearing surface head with trailing shield design for perpendicular recording. A reverse air bearing surface head for perpendicular recording is provided with an inversed bevel shape to handle skew when recording data on a magnetic recording medium.
摘要:
The invention is a magnetic transducer with separated read and write heads for perpendicular recording. The write head has a trailing shield that extends from the return pole piece toward the main pole piece to form the write gap at the air-bearing surface. One embodiment of the trailing shield is a two part structure with a pedestal and a much smaller tip that confronts the main pole piece at the gap. In one embodiment a sink of non-magnetic, electrically conductive material is disposed in the separation gap between the read head and the flux bearing pole piece. The sink is preferably made of copper and does not extend to the ABS.
摘要:
A method and apparatus for providing a reverse air bearing surface head with trailing shield design for perpendicular recording. A reverse air bearing surface head for perpendicular recording is provided with an inversed bevel shape to handle skew when recording data on a magnetic recording medium.