Segmented wind turbine rotor blade with welded joint

    公开(公告)号:US10605227B2

    公开(公告)日:2020-03-31

    申请号:US15485359

    申请日:2017-04-12

    摘要: The present disclosure is directed to a rotor blade assembly for a wind turbine having a first rotor blade segment with a first spar cap segment and a second rotor blade segment with a second spar cap segment. The first and second spar cap segments are arranged together at an interface and are constructed of a composite material. Further, the rotor blade assembly includes a joint assembly at the interface of the first and second spar cap segments. The joint assembly is constructed of a first metal joint secured to the first spar cap segment and a second metal joint secured to second spar cap segment. Moreover, the first and second metal joints are welded together at a weld area.

    Method for manufacturing a wind turbine rotor blade root assembly

    公开(公告)号:US11167507B2

    公开(公告)日:2021-11-09

    申请号:US15923043

    申请日:2018-03-16

    摘要: A method for manufacturing a rotor blade root assembly includes placing outer skin layer(s) onto a blade mold and arranging a root plate with a plurality of through holes adjacent to an end face of the blade mold. The method also includes placing a plurality of root inserts atop the outer skin layer(s) and abutting against the root plate, with each of the root inserts defining a fastener hole. The method also includes inserting a root fastener into each of the aligned through holes and longitudinal fastener holes. Moreover, the method includes placing inner skin layer(s) atop the root inserts. Further, the root plate may include at least one fluid hole configured therethrough to provide a non-gas tight root plate. Alternatively, at least one seal may be arranged between the root plate and the blade mold that forms a non-gas tight connection with either or both of the root plate or the blade mold during a vacuum infusion process. Thus, the method includes securing the outer skin layer(s), the root inserts, the inner skin layer(s), and the root fasteners together to form the root assembly via the vacuum infusion process.

    Methods for manufacturing wind turbine rotor blades and components thereof

    公开(公告)号:US10830206B2

    公开(公告)日:2020-11-10

    申请号:US15424084

    申请日:2017-02-03

    摘要: The present disclosure is directed to methods for manufacturing wind turbine rotor blades and components thereof, e.g. using 3D printing. In one embodiment, the method includes forming a rotor blade structure having a first surface and an opposing, second surface, the first and second surfaces being substantially flat. Another step includes printing a leading edge segment of the rotor blade onto the first surface, wherein heat from the printing bonds the leading edge segment to the first surface. The method also includes rotating the rotor blade structure having the leading edge segment attached thereto. A further step includes printing a trailing edge segment of the rotor blade onto the second surface, wherein heat from the printing bonds the trailing edge segment to the second surface. Another step includes securing one or more fiber-reinforced outer skins to the leading and trailing edge segments so as to complete the rotor blade.

    MODULAR BLADE STRUCTURE AND METHOD OF ASSEMBLY

    公开(公告)号:US20180340511A1

    公开(公告)日:2018-11-29

    申请号:US15603929

    申请日:2017-05-24

    IPC分类号: F03D1/06 F03D13/10

    摘要: The present disclosure is directed to a method of assembly of a rotor blade for a wind turbine. The method includes placing a first rotor blade section onto a first set location of an assembly fixture, wherein the first rotor blade includes a first locating datum such that the assembly fixture at the first set location constrains movement of the first rotor blade section at the first locating datum along a first direction; placing the first rotor blade section onto a second set location of the assembly fixture, wherein the first rotor blade includes a second locating datum such that the assembly fixture at the second set location constrains movement of the first rotor blade section at the second locating datum along a second direction; and positioning a second rotor blade section onto the first rotor blade section within the assembly fixture.

    Method for Manufacturing a Wind Turbine Rotor Blade Root Assembly

    公开(公告)号:US20190283347A1

    公开(公告)日:2019-09-19

    申请号:US15923043

    申请日:2018-03-16

    摘要: A method for manufacturing a rotor blade root assembly includes placing outer skin layer(s) onto a blade mold and arranging a root plate with a plurality of through holes adjacent to an end face of the blade mold. The method also includes placing a plurality of root inserts atop the outer skin layer(s) and abutting against the root plate, with each of the root inserts defining a fastener hole. The method also includes inserting a root fastener into each of the aligned through holes and longitudinal fastener holes. Moreover, the method includes placing inner skin layer(s) atop the root inserts. Further, the root plate may include at least one fluid hole configured therethrough to provide a non-gas tight root plate. Alternatively, at least one seal may be arranged between the root plate and the blade mold that forms a non-gas tight connection with either or both of the root plate or the blade mold during a vacuum infusion process. Thus, the method includes securing the outer skin layer(s), the root inserts, the inner skin layer(s), and the root fasteners together to form the root assembly via the vacuum infusion process.