Abstract:
A method in one embodiment includes acquiring optical image information with a detection unit configured to be operably coupled to a patient. The optical image information corresponds to microcirculation of the patient. The method also includes generating a microcirculation map of microvasculature of the patient using the optical image information. Further, the method includes generating a quantitative microcirculation index based on the microcirculation map, the quantitative microcirculation index corresponding to a condition of the patient.
Abstract:
The present approach relates to the use of trained artificial neural networks, such as convolutional neural networks, to classify vascular structures, such as using a hierarchical classification scheme. In certain approaches, the artificial neural network is trained using training data that is all or partly derived from synthetic vascular representations.
Abstract:
A method in one embodiment includes acquiring optical image information with a detection unit configured to be operably coupled to a patient. The optical image information corresponds to microcirculation of the patient. The method also includes generating a microcirculation map of microvasculature of the patient using the optical image information. Further, the method includes generating a quantitative microcirculation index based on the microcirculation map, the quantitative microcirculation index corresponding to a condition of the patient.
Abstract:
The present approach relates to the use of trained artificial neural networks, such as convolutional neural networks, to classify vascular structures, such as using a hierarchical classification scheme. In certain approaches, the artificial neural network is trained using training data that is all or partly derived from synthetic vascular representations.