Abstract:
A cryogenic fuel system for an aircraft having a turbine engine with a compressor section and a combustion chamber, including a tank for storing cryogenic fuel, a supply line operably coupling the tank to the combustion chamber and a pump coupling the tank to the supply line to pump the cryogenic fuel at high pressure through the supply line where the pump is operably coupled to the compressor such that operation of the turbine engine drives the pump and a method for delivering fuel in a fuel system to a turbine engine.
Abstract:
A cross-flow heat exchanger for gas turbine engines which may be utilized to transfer heat from one fluid flow to a second independent fluid flow wherein one of the fluid flows has a high differential inlet pressure and temperature. The heat exchanger has robust construction to inhibit mixing of the fluid flows during a single burst duct event.
Abstract:
Cryogenic fuel compositions including a cryogenic fuel and paraxyelene and a dual fuel aircraft system for an aircraft having at least one turbine engine, including a first fuel system for providing a first fuel from a first fuel tank to the turbine engine and a second fuel system for providing a cryogenic fuel composition and having a second fuel tank storing LNG and fluidly coupled to the turbine engine, an additive tank storing additives and fluidly coupled to the turbine engine and a mixing device configured to create the cryogenic fuel composition.
Abstract:
Turbine engine assemblies including a turbine engine assembly having a turbine core comprising a compressor section, a combustion section, a turbine section, and a nozzle section, which are axially aligned, wherein the combustion section comprises a generally annular case having inner and outer walls, a heat exchanger comprising multiple passages in proximity to at least one of the inner and outer walls, with the passages arranged about at least a portion of the case and in fluid communication with each other such that fluid may flow through the passages and a cryogenic fuel system having a cryogenic fuel tank with a supply line coupled to one of the passages, wherein cryogenic fuel may be supplied from the cryogenic fuel tank, through the supply line, to the passages of the heat exchanger, where the fuel in the passages may be heated by the combustion section. The heat exchanger may be a single or multistage vaporizer.
Abstract:
A method of managing evaporated cryogenic fuel in a storage tank of a cryogenic fuel system of an aircraft and an aircraft having at least one turbine engine providing propulsive force for the aircraft and a cryogenic fuel system including a passively cooled cryogenic fuel storage tank located within the aircraft, a pressure vent fluidly coupled to the cryogenic fuel storage tank and exhausting evaporated gas from the cryogenic fuel to define a natural gas vent stream, and a catalytic converter fluidly coupled to the pressure vent.
Abstract:
A method for managing boil-off from an LNG tank located on board of an aircraft. The method, including removing the boil-off from the aircraft and disposing of the removed boil-off from the aircraft and an equipment assembly for use with an aircraft having an on-board LNG tank with a vent system having an outlet coupling, including a removal system configured to remove boil-off from the aircraft and a disposal system configured to dispose of the boil-off.
Abstract:
Methods and devices for cooling systems (100, 700) are provided that are in fluid communication with bleed air from a jet engine compressor. The cooling systems include: a first precooler (210) receiving bleed air from the jet engine compressor; a heat exchanger (730) downstream from the first precooler (210); a cooling system compressor (220) downstream from the first precooler (210), wherein the heat exchanger (730) and the cooling system compressor (220) are in separate flow paths from the first precooler (210); a cooling system precooler (230) downstream from the cooling system compressor (220); a cooling system turbine (240) with variable guide vanes—VGT—and downstream from the cooling system precooler (230); and a discharge conduit (245) downstream from the cooling system turbine (240) and the heat exchanger (730). A bypass line (290) can also be included that bypasses the cooling system turbine (240).
Abstract:
A method and apparatus of using cryogenic fuel in an engine for an aircraft wherein the cryogenic fuel is supplied to the engine for combustion.
Abstract:
An aircraft having a turbine engine having a bleed air output line, a cryogenic fuel system having a cryogenic fuel tank for storing cryogenic fuel and a supply line operably coupling the tank to the turbine engine, and an on board inert gas generating system (OBIGGS) fluidly coupled to the bleed air output and having a nitrogen rich stream output line and an oxygen rich stream output line.