摘要:
A system for monitoring, controlling, and optimizing the operation of a kraft chemical recovery furnace which includes a mechanism for determining carryover particle counts, bed profile information, and temperature information of a smelt the bed over a major portion of the bed. The location and temperatures of high and low temperature spots on the bed can be determined. This information may be displayed in a convenient manner, such as on a common screen, for use by the furnace operator in controlling the furnace. Trending and history of bed performance in relationship to these characteristics may be tracked for use in diagnosing furnace operating problems and in adjusting parameters of the furnace to enhance furnace performance.
摘要:
A method and apparatus for profiling the bed of a furnace involves the production of a digital image of the bed and background. The digital image is processed to determine transitions in the image which correspond to transitions between the bed and background and thereby to the boundary of the bed. Bed characteristics, such as the bed profile, the bed height, the slope of the bed and the volume of the bed are determined from the processed image. The image may be displayed for use in controlling the performance of a furnace. In addition, the determined bed characteristics may be compared with reference bed characteristics, with the differences being displayed, used in controlling the operation of the furnace, or in activating an indicator, such as an alarm, in the event the reference and determined bed characteristics differ by a threshold amount.
摘要:
An inspection lens, including a lens tube having a central longitudinal axis and a plurality of axially aligned optical elements, including an outermost element. A sheath surrounding the lens tube and defining there between an annular air flow channel. The sheath has a diversion nozzle at a distal end, terminating in a lens tip. The diversion nozzle is configured to divert the air flow in the annular channel inward toward the longitudinal axis and at a slight reverse angle of between 0-18 degrees relative to a plane normal to the axis and back toward the outermost element creating a reverse oblique impinging jet inside said lens tip that minimizes any recirculation zone in front of the outermost element.
摘要:
A sensing system simultaneously obtains images and surface temperatures of processing tubes inside process heaters using an imaging sensor operating in the visible or infrared regions of the spectrum and capable of detecting visible or infrared radiation emitted or reflected from surfaces within the process heater, and of providing an image signal to a display or to an image processor. One or more single element infrared detectors viewing specific regions within the aforesaid image accurately measure the intensity of radiation emitted by surfaces within those specific regions so as to allow the temperature of the surfaces within those specific regions to be inferred.
摘要:
An acoustic pyrometer measures the average gas temperature across a wide space of known distance, especially turbulent, high temperature gas loaded with caustic particulates. It includes an acoustic signal generator that generates a high amplitude acoustic signal with a short rise time and a detector positioned adjacent the signal generator that detects the onset of the acoustic signal in the signal generator and generates a first electrical signal corresponding in time to the onset of the acoustic signal in the signal generator. A receiver, positioned across the space from the signal generator, receives acoustic signals from the space and generates electrical signals corresponding to amplitude and frequency of the acoustic signals received in the receiver. A signal processor processes the electrical signals from the receiver to distinguish the onset of the acoustic signal from background noise in the space as detected in the receiver, and processes the electrical signals from the receiver to produce a distinct differentiation between background noise and the onset of the acoustic signal in the receiver. The signal processor then compares the time of the onset of the acoustic signal in the receiver with the onset of the acoustic signal in the signal generator to determine the transit time of the acoustic signal to traverse the space, and also calculates the temperature of the gas in the space based on the transit time.
摘要:
An imaging system with the ability to produce clear images of deposits inside operating high temperature process equipment such as kraft recovery boilers and power utility boilers uses a terahertz/mm-wave imaging system. This system allows direct inspection capability and the ability to directly measure deposit thickness on tubes and other interior surfaces at all locations within the boiler and precipitator. Terahertz and mm-wave imaging systems employ active imaging in which a beam of terahertz or mm-wave radiation generated within the imaging system is used to illuminate a region of the scene under investigation. The reflected radiation is collected by a lens or mirror system and focused onto a detector that converts the collected radiation into an electrical signal. Both the illuminating beam and the receiving optics are scanned across the scene in a raster fashion to produce a time-varying signal that is converted into an image of the scene.
摘要:
A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.
摘要:
A system for detection and control of deposition on pendant tubes in recovery and power boilers includes one or more deposit monitoring sensors operating in infrared regions of about 4 or 8.7 microns and directly producing images of the interior of the boiler, or producing feeding signals to a data processing system for information to enable a distributed control system by which the boilers are operated to operate said boilers more efficiently. The data processing system includes an image pre-processing circuit in which a 2-D image formed by the video data input is captured, and includes a low pass filter for performing noise filtering of said video input. It also includes an image compensation system for array compensation to correct for pixel variation and dead cells, etc., and for correcting geometric distortion. An image segmentation module receives a cleaned image from the image pre-processing circuit for separating the image of the recovery boiler interior into background, pendant tubes, and deposition. It also accomplishes thresholding/clustering on gray scale/texture and makes morphological transforms to smooth regions, and identifies regions by connected components. An image-understanding unit receives a segmented image sent from the image segmentation module and matches derived regions to a 3-D model of said boiler. It derives a 3-D structure the deposition on pendant tubes in the boiler and provides the information about deposits to the plant distributed control system for more efficient operation of the plant pendant tube cleaning and operating systems.
摘要:
An acoustic pyrometer measures the average gas temperature across a space of known distance, especially turbulent, high temperature gas loaded with caustic particulates. It includes an acoustic signal generator that generates a high amplitude acoustic signal with a short rise time The acoustic signal generator includes an outer tank closed at top and bottom ends by top and bottom end walls and enclosing an outer chamber. A cylinder is supported within the tank and has top and bottom opposed ends. A mid-plate extends across the cylinder and defines the bottom end, and an axial opening in the mid-plate receives a shaft of a piston assembly having an upper piston and a lower piston at ends of the shaft. A throat is attached to the bottom end, and receives the lower piston. The lower piston seals the throat when received in the throat. The upper piston is slidable in the cylinder under influence of air pressure. A pneumatic operating system for charging said cylinder and said outer chamber with gas at a moderate pressure includes a coupling for connection to a source of gas pressure and a remotely operated vent to allow pressurized gas in the cylinder to escape, thereby allowing the piston assembly to open said throat and allow pressurized gas to escape and produce a shock wave for use by the acoustic pyrometer.
摘要:
An acoustic pyrometer measures the average gas temperature across a wide space of known distance, especially turbulent, high temperature gas loaded with caustic particulates. It includes an acoustic signal generator that generates a high amplitude acoustic signal with a short rise time and a detector positioned adjacent the signal generator that detects the onset of the acoustic signal in the signal generator and generates a first electrical signal corresponding in time to the onset of the acoustic signal in the signal generator. A receiver, positioned across the space from the signal generator, receives acoustic signals from the space and generates electrical signals corresponding to amplitude and frequency of the acoustic signals received in the receiver. A signal processor processes the electrical signals from the receiver to distinguish the onset of the acoustic signal from background noise in the space as detected in the receiver, and processes the electrical signals from the receiver to produce a distinct differentiation between background noise and the onset of the acoustic signal in the receiver. The signal processor then compares the time of the onset of the acoustic signal in the receiver with the onset of the acoustic signal in the signal generator to determine the transit time of the acoustic signal to traverse the space, and also calculates the temperature of the gas in the space based on the transit time.