摘要:
Data rate allocation decisions are made for a communications channel. A message is sent on a communication channel such as on a paging channel. The message indicates a forward Effective Radiate Power (ERP) of a pilot signal transmitted. The remote station then determines the received signal strength of this pilot signal, taking into account receiver gains. The path loss may be estimated as the difference between the forward ERP data value received and the detected received pilot power. This transmit power level information is encoded as a digital data word together with the forward path loss information. Upon transmission, the forward path loss estimate as calculated and the output power value can then help determine the amount of excess power available. This is indicative of the amount of dynamic range available in the transmit power amplifier. Coding rates which require a higher dynamic range may be acceptable for use.
摘要:
The present invention provides for making code rate adjustments and modulation type adjustments in a pseudonoise (PN) encoded CDMA system. Coding rate adjustments may be made by changing the number of information bits per symbol, or Forward Error Code (FEC) coding rate. A forward error correction (FEC) block size is maintained at a constant amount. Therefore, as the number of information bits per symbol are increased, an integer multiple of bits per epoch is always maintained. The scheme permits for a greater flexibility and selection of effective data rates providing information bit rates ranging from, for example, approximately 50 kilobits per second to over 5 mega bits per second (Mbps) in one preferred embodiment.
摘要:
A single, common correlation filter (CF) core is provided in a receiver for recovery of data from received code division multiple access (CDMA) signals. Signals are received over CDMA channels with different data rates, where the received signals include user information such as pilot and data symbols that have been spread according to different despreading rates including tier 1, tier 2 and tier 3 rates, where tier 1 is the smallest despreading rate. The received signal is correlated at the smallest despreading rate in the correlation filter (CF) by time multiplexing delayed versions of the pseudorandom noise (PN) code. The correlated information is then demultiplexed and pilot-aided QPSK demodulated. The demodulated information is summed at the proper integer multiple of the tier 1 rate to achieve tier 2 and tier 3 despreading rates. According to an embodiment, the three strongest multipaths components in terms of the received power are selected in a window or time period for optimal information recovery.
摘要:
A single, common correlation filter (CF) core is provided in a wireless system using CDMA. A plurality of channels with different data rates are provided in the wireless system. The channels provided in the wireless system include the access channel, the maintenance channel, and the traffic channel in which information (e.g., pilot or data symbols or both) is transmitted at the tier 1, tier 2 and tier 3 rates. The data rate for transmitting the information is programmable by digital signal processor (DSP). A user-unique code, such as a PN code, is applied to the information being transmitted in the channels of the wireless system. The information is QPSK modulated and transmitted in any one of the channels at any data rate. The transmitted information is correlated at the smallest data rate (i.e., the tier 1 rate) in the correlation filter (CF) of the wireless system by time multiplexing delayed versions of the PN code to the correlation filter core. The correlated information is then demultiplexed and pilot aided QPSK demodulated. The demodulated information is summed at the proper integer multiple of the tier 1 rate to achieve the tier 2 and tier 3 rates. The three strongest multipaths (in terms of the received power) are selected in a window or time period for optimal information recovery. Furthermore, three outputs from the demodulated information can be provided and combined for temporal diversity. Spatial diversity is achieved by providing a plurality of antennas at each receiver and a single, common correlation filter at each of the plurality of antennas of the receivers in the wireless system.
摘要:
Codes are applied to signals to reduce the number of transceivers and associated RF cabling extending from base electronics to antenna array electronics in a base station providing beam forming. The transceivers can be reduced to as few as one, and the RF cabling can be reduced to none. The codes may be orthogonal codes, such as Walsh codes. The codes are applied: to weights used to produce the beam forming, signal being transmitted or received, or both. The codes are applied a second time to decompose the coded weights/signal to associate the weights and signal with the beam forming. The coded weights/signal can be summed, including with other coded weights/signals, to produce a composite code division multiplexed signal for transmission between transceiver(s) and antenna array electronics over a single RF or non-RF cable spanning between the base electronics and array electronics. The complexity, size, and cost of electronics and cables are reduced, and calibration of transceivers and demodulators can be eliminated.
摘要:
A single, common correlation filter (CF) core is provided in a wireless system using CDMA. A plurality of channels with different data rates are provided in the wireless system. The channels provided in the wireless system include the access channel, the maintenance channel, and the traffic channel in which information (e.g., pilot or data symbols or both) is transmitted at the tier 1, tier 2 and tier 3 rates. The data rate for transmitting the information is programmable by digital signal processor (DSP). A user-unique code, such as a PN code, is applied to the information being transmitted in the channels of the wireless system. The information is QPSK modulated and transmitted in any one of the channels at any data rate. The transmitted information is correlated at the smallest data rate (i.e., the tier 1 rate) in the correlation filter (CF) of the wireless system by time multiplexing delayed versions of the PN code to the correlation filter core. The correlated information is then demultiplexed and pilot aided QPSK demodulated. The demodulated information is summed at the proper integer multiple of the tier 1 rate to achieve the tier 2 and tier 3 rates. The three strongest multipaths (in terms of the received power) are selected in a window or time period for optimal information recovery. Furthermore, three outputs from the demodulated information can be provided and combined for temporal diversity. Spatial diversity is achieved by providing a plurality of antennas at each receiver and a single, common correlation filter at each of the plurality of antennas of the receivers in the wireless system.
摘要:
A transmitter which includes a quadrature phase shift keying (QPSK) modulator, and a receiver which includes a pilot correlation filter (PCF), a data matching filter (DMF), a timing recovery mechanism, a sampler, and a QPSK demodulator are provided in a wireless communication system. The transmitter transmits a frame of data symbols and pilot symbols to a receiver in a wireless system. The pilot symbols are inserted in the frame at known time intervals. The QPSK modulator modulates the frame of data and pilot symbols. As the receiver receives the frame of data and pilot symbols from the transmitter, the PCF recovers the pilot symbols sent by the transmitter, whereas the timing recovery mechanism tracks the timing of the pilot symbols in the frame. The DMF enhances the multipath response of the frame of data and pilot symbols at the known time intervals of the pilot symbols, and outputs a plurality of enhanced peaks. The sampler samples the multipath response of the frame of data and pilot symbols at each of the enhanced peaks. The QPSK demodulator demodulates the sampled frame of data and pilot symbols and recovers the data symbols using QPSK demodulation based on the sampled frame.
摘要:
The present invention provides for making code rate adjustments and modulation type adjustments in a pseudonoise (PN) encoded CDMA system. Coding rate adjustments may be made by changing the number of information bits per symbol, or Forward Error Code (FEC) coding rate. A forward error correction (FEC) block size is maintained at a constant amount. Therefore, as the number of information bits per symbol are increased, an integer multiple of bits per epoch is always maintained. The scheme permits for a greater flexibility and selection of effective data rates providing information bit rates ranging from, for example, approximately 50 kilobits per second to over 5 mega bits per second (Mbps) in one preferred embodiment.
摘要:
A technique for efficient implementation of pilot signals on a reverse link in a wireless communication system. An access channel is defined for the reverse link such that within each frame, or epoch, a portion is dedicated to sending only pilot symbols. Another portion of the frame is reserved for sending mostly data symbols; however, within this second portion of the frame, additional pilot symbols are interleaved among the data symbols. The pilot symbol or preamble portion of the access channel frame allows for efficient acquisition of the access signal at the base station, while providing a timing reference for determining the effects of multipath fading. In particular, a pilot correlation filter provides a phase estimate from the pilot symbols in the preamble portion, which is then used to decode the data symbols in the payload portion. An access acquisition portion of the receiver uses the phase estimates provided by the pilot correlation filter to process the output of a data symbol correlation filter. The additional pilot symbols embedded in the payload portion are used in a cross product operation to further resolve the effects of multipath fading.
摘要:
Data rate allocation decisions are made for a communications channel, such as a wireless reverse link connection. A first parameter used in this determination is a path loss, which is determined by the following process. First, a message is sent from a first station to a second station, such as on a paging channel. The message indicates a forward Effective Radiated Power (ERP) of a pilot signal transmitted by the first station. The second station then determines the received signal strength of this pilot signal, taking into account receiver gains. The path loss can then be estimated by the second station as the difference between the forward ERP data value that it received and the detected received pilot power. The second station also then preferably determines a transmit power level when transmitting a message back to the first station. This transmit power level information is encoded as a digital data word together with the forward path loss information as calculated by the first station. Upon receipt of these two pieces of information by the first station, the forward path loss estimate as calculated by the second station, and the output power value of the second station, the first station can then determine the amount of excess power available at the field unit. This excess power difference is indicative of the amount of dynamic range available in the transmit power amplifier in the particular second station. With this information, the first station can then make a determination as to whether coding rates which require a higher dynamic range will be acceptable for use by the particular second station.