摘要:
A device responsive to an electromagnetic signal includes a conductor for conducting the electromagnetic signal, a magnetic structure disposed proximate the conductor to enable gyromagnetic interaction between the electromagnetic signal and the magnetic structure and a transducer disposed on the magnetic structure for controlling a domain pattern in the magnetic structure.
摘要:
An apparatus and method are described for gyromagnetic interaction between the electromagnetic field generated by an electromagnetic signal conducted by a superconductor and the magnetization contained in a magnetic structure. A ferrite magnetic structure is disposed in close proximity to a superconductor conducting the electromagnetic signal. A magnetization is induced in the magnetic structure with a geometry such that the magnetic flux is confined within the magnetic structure or eliminated from the magnetic structure so as not to produce an external magnetic field to interfere with the superconducting properties of the superconductor. The electromagnetic field of the signal conducted by the superconductor interacts gyromagnetically with the magnetization of the magnetic structure, inducing a phase shift in the electromagnetic signal traversing the superconductor. Thus, the invention induces a phase shift in the signal with minimum insertion loss due to electrical resistance.
摘要:
Intermodulation distortion (IMD) is known to be an impediment to progress in superconductor-based filter technology. The present invention's methodology for reducing IMD can open doors to heretofore unseen practical applications involving high temperature superconductor (HTS) filters. Typical inventive practice includes (a) increasing the thickness d, and/or (b) changing the operation temperature T, of the filter's HTS film. The film's thickness d is increased in such a way as to decrease the IMD power PIMD in accordance with the material-independent proportionate relationship PIMD∝1/d1.5-6. The film's operation temperature T is bettered or optimized in accordance with the material-independent proportionate relationship PIMD∝(λO(T))10(K(2)(T))2/(ΔO(T))6, and further in accordance with three individual material-dependent relationships, namely, between operation temperature T and each of linear penetration depth λO, gap maximum ΔO, and kernel K(2). Some inventive embodiments include oxygen overdoping of the film as an additional/alternative IMD-reductive measure.
摘要:
As typically embodied, the present invention's RF cavity device comprises a rigid frame and plural flexible tiles. The frame includes walls of at least substantially uniform thicknesses that describe a hollow pillbox shape. The tiles are at least approximately equally thick, each tile being of at least substantially uniform thickness. Each tile includes a flexible metallic substrate and an HTS coating atop the substrate. The tiles are attached via their corresponding substrates to the inside wall surfaces of the frame so that their corresponding HTS coatings are interiorly exposed. The attached tiles flexibly conform to curved surface areas, are snugly set with narrow seams therebetween, and cover at least approximately the entirety of the frame's inside wall surfaces. A filler material is applied to the seams. The resultant tile configuration is characterized by at least approximate levelness of the exposed HTS coating surfaces and the filled seams.
摘要:
As typically embodied, the present invention's RF cavity device comprises a rigid frame and plural flexible tiles. The frame includes walls of at least substantially uniform thicknesses that describe a hollow pillbox shape. The tiles are at least approximately equally thick, each tile being of at least substantially uniform thickness. Each tile includes a flexible metallic substrate and an HTS coating atop the substrate. The tiles are attached via their corresponding substrates to the inside wall surfaces of the frame so that their corresponding HTS coatings are interiorly exposed. The attached tiles flexibly conform to curved surface areas, are snugly set with narrow seams therebetween, and cover at least approximately the entirety of the frame's inside wall surfaces. A filler material is applied to the seams. The resultant tile configuration is characterized by at least approximate levelness of the exposed HTS coating surfaces and the filled seams.
摘要:
A stripline device using at least one strip conductor and at least one ground plane separated therefrom by a dielectric substrate. The ground plane is caused to move relative to the strip conductor so as to change the propagation velocity of the stripline device. In a particular embodiment, a layer of piezoelectric material is positioned adjacent the ground plane and a voltage applied to the piezoelectric layer causes its dimensions to change and provide a changing air gap between the substrate and the ground plane to change the propagation velocity accordingly.
摘要:
Intermodulation distortion (IMD) is known to be an impediment to progress in superconductor-based filter technology. The present invention's methodology for reducing IMD can open doors to heretofore unseen practical applications involving high temperature superconductor (HTS) filters. Typical inventive practice includes (a) increasing the thickness d, and/or (b) changing the operation temperature T, of the filter's HTS film. The film's thickness d is increased in such a way as to decrease the IMD power PIMD in accordance with the material-independent proportionate relationship PIMD∝1/d1.5-6. The film's operation temperature T is bettered or optimized in accordance with the material-independent proportionate relationship PIMD∝(λO(T))10(K(2)(T))2/(ΔO(T))6, and further in accordance with three individual material-dependent relationships, namely, between operation temperature T and each of linear penetration depth λO, gap maximum ΔO, and kernel K(2). Some inventive embodiments include oxygen overdoping of the film as an additional/alternative IMD-reductive measure.
摘要:
Intermodulation distortion (IMD) is known to be an impediment to progress in superconductor-based filter technology. The present invention's methodology for reducing IMD can open doors to heretofore unseen practical applications involving high temperature superconductor (HTS) filters. Typical inventive practice includes (a) increasing the thickness d, and/or (b) changing the operation temperature T, of the filter's HTS film. The film's thickness d is increased in such a way as to decrease the IMD power PIMD in accordance with the material-independent proportionate relationship PIMD∝1/d1.5-6. The film's operation temperature T is bettered or optimized in accordance with the material-independent proportionate relationship PIMD∝(λO(T))10(K(2)(T))2/(ΔO(T))6, and further in accordance with three individual material-dependent relationships, namely, between operation temperature T and each of linear penetration depth λO, gap maximum ΔO, and kernel K(2). Some inventive embodiments include oxygen overdoping of the film as an additional/alternative IMD-reductive measure.
摘要:
A power diverter is presented. The power diverter includes a first ninety degree hybrid having one output coupled to a positive adjustable phase shifter and another output coupled to a negative adjustable phase shifter providing a negative phase shift. The value of the phase shift provided by the positive phase shifter and the negative phase shifter is the same amount of degrees but opposite. A second ninety degree hybrid combines the outputs of the phase shifters. The circuit is provided comprising only analog linear components such that no spurious signals are introduced, and the circuit is impedance matched on all ports such that no degradation of noise figure is introduced. The power diverter can also be configured as a programmable tap of a delay line.
摘要:
An acoustic wave signal processing device which in a preferred embodiment utilizes at least one holographic grating formed within a portion of the interior of a substrate which is capable of supporting the propagation of bulk acoustic wave signals therein. The grating provides spatially varying acoustic impedances within the substrate and interacts with bulk acoustic wave signals propagated therethrough so as to produce output acoustic wave signals. The grating and transducers for producing and receiving the input and output bulk acoustic wave signals, respectively, can be arranged to provide a variety of signal processing operations which may be desired, such as providing resonating operations and filter operations, for example.