Abstract:
Disclosed is a tactile sensory system consisting of set of sensors that work by measuring impedance among plurality of electrodes. The electrodes are deployed on a substantially rigid structure that is protected form the direct contact with external objects by overlying deformable structures. These mechanical structures have similarities to the biological relationships among the distal phalanx, overlying finger pulp and covering skin and nail. Signal information is extracted form these sensors that is related to canonical physical representations used to describe stimuli to be sensed.
Abstract:
Devices and methods for locating a target site for the electrical stimulation of muscles are disclosed. The intensity of a search stimulus is varied continuously near the threshold to evoke an M-wave recorded by EMG electrodes. A feedback signal allows the clinician to judge when the threshold is sufficiently low to warrant the implantation of the stimulation electrodes at that site.
Abstract:
The subject invention teaches the use of electrical stimulation of specific sensory nerves, such as the proximal urethral afferents to control urination. A wireless, injectable microstimulator may implanted into the soft tissues through which the sensory nerves pass. The sensory nerves supplying the proximal urethra are stimulated by a microstimulator implanted adjacent to the prostatic urethra within the substance of the prostate gland in males, and distal to the bladder neck in females. The activity induced in these nerves causes the spinal cord to generate reflex responses that result in contractions of the detrusor muscle and relaxation of the sphincter, emptying the bladder. The invention also includes methods of implanting and/or testing microstimulators at a target location. The invention also includes the use of sensory devices to effect the microstimulators or alert the user as to the status of the bladder.
Abstract:
Devices and systems for recording and/or stimulating electrical signals in order to identify a target site within a patient's brain for further electrical stimulation and chemical treatments of the brain. The deep brain stimulation devices and methods include implantable devices having various microelectrode configurations and drug delivery mechanisms. The devices can be used to treat a variety of neurological conditions.
Abstract:
Disclosed are biomedical stimulators and systems that deliver stimulus power efficiently to electrodes and tissues, provide reliable control of stimulus efficacy over a wide dynamic range of available power and voltage, avoid damaging net direct current flow through tissue, minimize the amount of data that must be transmitted to specify a particular stimulus strength, and extend the range of received field strengths for which stimulators can function safely and reliably. These biomedical stimulators and systems provide reliable stimulation of known intensity by measuring charging currents and discharging predetermined quantities of charge.
Abstract:
Systems and methods for fitting cochlear implants. The cochlear implant fitting systems and methods can be used to generate various stimulus patterns for fitting patients with speech processors for cochlear implants. The fitting systems and methods provide means to identify rapidly which of several speech processing strategies could function effectively in cochlear implant patients.
Abstract:
Disclosed are methods and systems for a virtual reality simulation and display of limb movement that facilitate the development and fitting of prosthetic control of a paralyzed or artificial limb. The user generates command signals that are then processed by the control system. The output of the control system drives a physics-based simulation of the limb that simulates the limb to be controlled. The computed movements of the model limb are displayed to the user as a 3D animation from the perspective of the user so as to give the impression that the user is watching the actual movements of his/her own limb. The user learns to adjust his/her command signals to perform tasks successfully with the virtual limb. Alternatively or additionally, the errors produced by the virtual limb and/or the responses of the user during the training process can provide information for adapting the properties of the control system itself.
Abstract:
A biosensing device for detecting biological analytes, and methods of use and manufacture, are disclosed. The device includes a biosensing element that can remain implanted for extended periods of time. The biosensing element is connected to an optical fiber terminating outside of the body. The optical fiber is also connected to an information analyzer. The information analyzer directs light through the optical fiber into the biosensing element. The light excites fluorophores, created by a chemical reaction between analytes and biosensing material within the biosensing element. Emitted fluorescent light is redirected through the optical fiber to the information analyzer. Detectors detect the deflected fluorescent emissions and, according to their determined wavelength, report the presence or quantity of specific analytes to the patient on an external display.
Abstract:
A probe device for detecting chemotherapy effectiveness, and methods of use are disclosed. The device includes a fiber optic probe element that can be injected into a tumor. The probe element is connected to an external controlling/measurement element, which injects a reagent through the probe and into the tumor. The reagent reacts with biological markers indicative of chemotherapy effectiveness.
Abstract:
A biosensing device for detecting biological analytes, and methods of use and manufacture, are disclosed. The device includes a biosensing element that can remain implanted for extended periods of time. The biosensing element is connected to an optical fiber terminating outside of the body. The optical fiber is also connected to an information analyzer. The information analyzer receives light from the reaction of fluorescent molecules in the biosensing element. The biosensing device can be used to detect and analyze the effectiveness of chemotherapy agents and molecules associated with various diseases.