摘要:
The present invention provides a spectroscopic system and in particular a fiber optic probe for in vivo detection of vulnerable atherosclerotic plaque inside the cardiovascular system of a patient. Detection of vulnerable plaque is based on a location dependent measurement of concentration levels of cardiac marker molecules flowing in the blood stream. Concentration level determination is preferably based on surface-enhanced Raman spectroscopic techniques providing sufficient sensitivity for determination of these concentration levels. Acquisition of spectroscopic data during moving of the fiber optic probe through the cardiovascular system with controlled velocity allows to precisely locate vulnerable plaque in the cardiovascular system.
摘要:
The present invention relates to a system for guiding a medical instrument in a patient body. Such a system comprises means for acquiring a 2D X-ray image of said medical instrument, means for acquiring a 3D ultrasound data set of said medical instrument using an ultrasound probe, means for localizing said ultrasound probe in a referential of said X-ray acquisition means, means for selecting a region of interest around said medical instrument within the 3D ultrasound data set and means for generating a bimodal representation of said medical instrument detection by combining said 2D X-ray image and said 3D ultrasound data set. A bimodal representation is generated on the basis of the 2D X-ray image by replacing the X-ray intensity value of points belonging to said region of interest by the ultrasound intensity value of the corresponding point in the 3D ultrasound data set.
摘要:
The present invention relates to a system for guiding a medical instrument in a patient body. Such a system comprises means for acquiring a 2D X-ray image of said medical instrument, means for acquiring a 3D ultrasound data set of said medical instrument using an ultrasound probe, means for localizing said ultrasound probe in a referential of said X-ray acquisition means, means for selecting a region of interest around said medical instrument within the 3D ultrasound data set and means for generating a bimodal representation of said medical instrument detection by combining said 2D X-ray image and said 3D ultrasound data set. A bimodal representation is generated on the basis of the 2D X-ray image by replacing the X-ray intensity value of points belonging to said region of interest by the ultrasound intensity value of the corresponding point in the 3D ultrasound data set.
摘要:
Images of static vascular maps (B), which were taken at different phases of the cardiac cycle and/or the respiratory cycle and were archived in a memory (6), are superimposed on a current image (A) of a catheter (2, 8) in the vascular system (9). In the method, a defined section of a map image (B) around the estimated actual position of the catheter is selected and is displayed superimposed on the current image (A) on a monitor (10). The map image (B) used for this is preferably selected by an electrocardiogram to match the particular cardiac cycle. The position of the catheter relative to the map image (B) is estimated using a distance image (D).
摘要:
The invention relates to the association of a current (X-ray image) image of a body volume with one of several stored previous images, the ECG and the respiratory cycle being determined each time together with the images. Using this data, that one of the previous images is chosen which is closest to the current image in respect of cardiac rhythm and respiratory cycle. The resultant association yields a very high accuracy enabling superposed reproduction of the current image and the associated previous image.
摘要:
The invention relates to a device and to a method for combining two images, especially for superimposition of static vascular maps (B), which were taken at different phases of the cardiac cycle and/or the respiratory cycle and were archived in a memory (6), on a current image (A) of a catheter (2, 8) in the vascular system (9). In the method, a defined section of a map image (B) around the estimated actual position of the catheter is selected and is displayed superimposed on the current image (A) in an image (C) on a monitor (10). The map image (B) used for this is preferably selected by means of an electrocardiogram to match the particular cardiac cycle. The position of the catheter relative to the map image (B) can be estimated using a distance image (D).