Biomarker Evaluation Through Image Analysis

    公开(公告)号:US20130108139A1

    公开(公告)日:2013-05-02

    申请号:US13282450

    申请日:2011-10-26

    IPC分类号: G06K9/34

    摘要: A method for determining whether a test biomarker is a stain for a type of cell component, such as membrane or nucleus, involves performing various segmentation processes on an image of tissue stained with the test biomarker. One segmentation process searches for a first cell component type, and another segmentation process searches for a second cell component type by segmenting only stained pixels. The test biomarker is identified as a stain for each component type if the process identifies the component based only on stained pixels. Whether the test biomarker is a membrane stain or nucleus stain is displayed on a graphical user interface. In addition, the method identifies stained pixels corresponding to a second cell component using pixels determined to correspond to a first cell component. An expression profile for the test biomarker is then displayed that indicates the proportion of stained pixels in each type of cell component.

    Generating Artificial Hyperspectral Images Using Correlated Analysis of Co-Registered Images
    3.
    发明申请
    Generating Artificial Hyperspectral Images Using Correlated Analysis of Co-Registered Images 有权
    使用相关分析共同注册的图像生成人造高光谱图像

    公开(公告)号:US20130016886A1

    公开(公告)日:2013-01-17

    申请号:US13546182

    申请日:2012-07-11

    IPC分类号: G06K9/50

    摘要: High-resolution digital images of adjacent slices of a tissue sample are acquired, and tiles are defined in the images. Values associated with image objects detected in each tile are calculated. The tiles in adjacent images are co-registered. A first hyperspectral image is generated using a first image, and a second hyperspectral image is generated using a second image. A first pixel of the first hyperspectral image has a first pixel value corresponding to a local value obtained using image analysis on a tile in the first image. A second pixel of the second hyperspectral image has a second pixel value corresponding to a local value calculated from a tile in the second image. A third hyperspectral image is generated by combining the first and second hyperspectral images. The third hyperspectral image is then displayed on a computer monitor using a false-color encoding generated using the first and second pixel values.

    摘要翻译: 获取组织样本的相邻切片的高分辨率数字图像,并且在图像中定义瓦片。 计算与每个图块中检测到的图像对象相关联的值。 相邻图像中的瓦片共同注册。 使用第一图像生成第一高光谱图像,并且使用第二图像生成第二高光谱图像。 第一高光谱图像的第一像素具有对应于在第一图像中的图块上使用图像分析获得的局部值的第一像素值。 第二高光谱图像的第二像素具有对应于从第二图像中的图块计算的局部值的第二像素值。 通过组合第一和第二高光谱图像来生成第三高光谱图像。 然后,使用使用第一和第二像素值生成的伪色编码,在计算机监视器上显示第三高光谱图像。

    Automatic image analysis and quantification for fluorescence in situ hybridization
    4.
    发明申请
    Automatic image analysis and quantification for fluorescence in situ hybridization 有权
    荧光原位杂交的自动图像分析和定量

    公开(公告)号:US20120237106A1

    公开(公告)日:2012-09-20

    申请号:US13199412

    申请日:2011-08-29

    IPC分类号: G06K9/00

    摘要: An analysis system automatically analyzes and counts fluorescence signals present in biopsy tissue marked using Fluorescence in situ Hybridization (FISH). The user of the system specifies classes of a class network and process steps of a process hierarchy. Then pixel values in image slices of biopsy tissue are acquired in three dimensions. A computer-implemented network structure is generated by linking pixel values to objects of a data network according to the class network and process hierarchy. Objects associated with pixel values at different depths of the biopsy tissue are used to determine the number, volume and distance between cell components. In one application, fluorescence signals that mark Her2/neural genes and centromeres of chromosome seventeen are counted to diagnose breast cancer. Her2/neural genes that overlap one another or that are covered by centromeres can be accurately counted. Signal artifacts that do not mark genes can be identified by their excessive volume.

    摘要翻译: 分析系统自动分析和计数使用荧光原位杂交(FISH)标记的活检组织中存在的荧光信号。 系统的用户指定类网络的类和进程层次结构的处理步骤。 然后在三维中获取活检组织的图像切片中的像素值。 通过根据类网络和进程层次将像素值链接到数据网络的对象来生成计算机实现的网络结构。 与活检组织不同深度处的像素值相关联的物体用于确定细胞组分之间的数量,体积和距离。 在一个应用中,计数标记Her2 /神经基因的荧光信号和17号染色​​体的着丝粒被诊断为乳腺癌。 可以准确计算Her2 /彼此重叠或被着丝粒覆盖的神经基因。 不标记基因的信号伪影可以通过其过量的体积来识别。

    Biomarker evaluation through image analysis
    5.
    发明授权
    Biomarker evaluation through image analysis 有权
    通过图像分析进行生物标记评估

    公开(公告)号:US09042630B2

    公开(公告)日:2015-05-26

    申请号:US13282450

    申请日:2011-10-26

    IPC分类号: G06K9/00 G06T7/00

    摘要: A method for determining whether a test biomarker is a stain for a type of cell component, such as membrane or nucleus, involves performing various segmentation processes on an image of tissue stained with the test biomarker. One segmentation process searches for a first cell component type, and another segmentation process searches for a second cell component type by segmenting only stained pixels. The test biomarker is identified as a stain for each component type if the process identifies the component based only on stained pixels. Whether the test biomarker is a membrane stain or nucleus stain is displayed on a graphical user interface. In addition, the method identifies stained pixels corresponding to a second cell component using pixels determined to correspond to a first cell component. An expression profile for the test biomarker is then displayed that indicates the proportion of stained pixels in each type of cell component.

    摘要翻译: 用于确定测试生物标志物是否是细胞成分(例如膜或细胞核)类型的污渍的方法包括对用测试生物标志物染色的组织的图像执行各种分割过程。 一个分割过程搜索第一个单元分量类型,另一个分割过程通过仅分割染色的像素来搜索第二单元分量类型。 如果过程仅基于染色的像素识别组分,则将测试生物标志物鉴定为每种组分类型的污点。 测试生物标志物是膜污点还是核染色体显示在图形用户界面上。 此外,该方法使用被确定为对应于第一单元组件的像素来识别与第二单元组件对应的染色像素。 然后显示用于测试生物标志物的表达谱,其指示每种类型细胞组分中染色像素的比例。

    Evaluation of Co-Registered Images of Differently Stained Tissue Slices
    6.
    发明申请
    Evaluation of Co-Registered Images of Differently Stained Tissue Slices 有权
    评估不同染色组织切片的共同注册图像

    公开(公告)号:US20130156279A1

    公开(公告)日:2013-06-20

    申请号:US13330900

    申请日:2011-12-20

    摘要: A method for co-registering images of tissue slices stained with different biomarkers displays a first digital image of a first tissue slice on a graphical user interface such that an area of the first image is enclosed by a frame. Then a portion of a second image of a second tissue slice is displayed such that the area of the first image enclosed by the frame is co-registered with the displayed portion of the second image. The displayed portion of the second image has the shape of the frame. The tissue slices are both z slices of a tissue sample taken at corresponding positions in the x and y dimensions. The displayed portion of the second image is shifted in the x and y dimensions to coincide with the area of the first image that is enclosed by the frame as the user shifts the first image under the frame.

    摘要翻译: 用不同生物标志物染色的组织切片的共同对准图像的方法在图形用户界面上显示第一组织切片的第一数字图像,使得第一图像的区域被框包围。 然后显示第二组织切片的第二图像的一部分,使得由帧包围的第一图像的区域与第二图像的显示部分共同对准。 第二图像的显示部分具有该帧的形状。 组织切片是在x和y维度的相应位置处取得的组织样本的z切片。 当用户移动帧下的第一图像时,第二图像的显示部分在x和y维度上移位以与由帧包围的第一图像的区域一致。

    Automatic image analysis and quantification for fluorescence in situ hybridization
    7.
    发明申请
    Automatic image analysis and quantification for fluorescence in situ hybridization 有权
    荧光原位杂交的自动图像分析和定量

    公开(公告)号:US20080137937A1

    公开(公告)日:2008-06-12

    申请号:US11607557

    申请日:2006-11-30

    IPC分类号: G06K9/00

    摘要: An analysis system automatically analyzes and counts fluorescence signals present in biopsy tissue marked using Fluorescence in situ Hybridization (FISH). The user of the system specifies classes of a class network and process steps of a process hierarchy. Then pixel values in image slices of biopsy tissue are acquired in three dimensions. A computer-implemented network structure is generated by linking pixel values to objects of a data network according to the class network and process hierarchy. Objects associated with pixel values at different depths of the biopsy tissue are used to determine the number, volume and distance between cell components. In one application, fluorescence signals that mark Her2/neural genes and centromeres of chromosome seventeen are counted to diagnose breast cancer. Her2/neural genes that overlap one another or that are covered by centromeres can be accurately counted. Signal artifacts that do not mark genes can be identified by their excessive volume.

    摘要翻译: 分析系统自动分析和计数使用荧光原位杂交(FISH)标记的活检组织中存在的荧光信号。 系统的用户指定类网络的类和进程层次结构的处理步骤。 然后在三维中获取活检组织的图像切片中的像素值。 通过根据类网络和进程层次将像素值链接到数据网络的对象来生成计算机实现的网络结构。 与活检组织不同深度处的像素值相关联的物体用于确定细胞组分之间的数量,体积和距离。 在一个应用中,计数标记Her2 /神经基因的荧光信号和17号染色​​体的着丝粒被诊断为乳腺癌。 可以准确计算Her2 /彼此重叠或被着丝粒覆盖的神经基因。 不标记基因的信号伪影可以通过其过量的体积来识别。

    Generating artificial hyperspectral images using correlated analysis of co-registered images
    8.
    发明授权
    Generating artificial hyperspectral images using correlated analysis of co-registered images 有权
    使用共同注册图像的相关分析生成人造高光谱图像

    公开(公告)号:US08699769B2

    公开(公告)日:2014-04-15

    申请号:US13546182

    申请日:2012-07-11

    IPC分类号: G06K9/00 G06T7/00

    摘要: High-resolution digital images of adjacent slices of a tissue sample are acquired, and tiles are defined in the images. Values associated with image objects detected in each tile are calculated. The tiles in adjacent images are co-registered. A first hyperspectral image is generated using a first image, and a second hyperspectral image is generated using a second image. A first pixel of the first hyperspectral image has a first pixel value corresponding to a local value obtained using image analysis on a tile in the first image. A second pixel of the second hyperspectral image has a second pixel value corresponding to a local value calculated from a tile in the second image. A third hyperspectral image is generated by combining the first and second hyperspectral images. The third hyperspectral image is then displayed on a computer monitor using a false-color encoding generated using the first and second pixel values.

    摘要翻译: 获取组织样本的相邻切片的高分辨率数字图像,并且在图像中定义瓦片。 计算与每个图块中检测到的图像对象相关联的值。 相邻图像中的瓦片共同注册。 使用第一图像生成第一高光谱图像,并且使用第二图像生成第二高光谱图像。 第一高光谱图像的第一像素具有对应于在第一图像中的图块上使用图像分析获得的局部值的第一像素值。 第二高光谱图像的第二像素具有对应于从第二图像中的图块计算的局部值的第二像素值。 通过组合第一和第二高光谱图像来生成第三高光谱图像。 然后,使用使用第一和第二像素值生成的伪色编码,在计算机监视器上显示第三高光谱图像。

    Automatic image analysis and quantification for fluorescence in situ hybridization
    10.
    发明授权
    Automatic image analysis and quantification for fluorescence in situ hybridization 有权
    荧光原位杂交的自动图像分析和定量

    公开(公告)号:US08019134B2

    公开(公告)日:2011-09-13

    申请号:US11607557

    申请日:2006-11-30

    IPC分类号: G06K9/00

    摘要: An analysis system automatically analyzes and counts fluorescence signals present in biopsy tissue marked using Fluorescence in situ Hybridization (FISH). The user of the system specifies classes of a class network and process steps of a process hierarchy. Then pixel values in image slices of biopsy tissue are acquired in three dimensions. A computer-implemented network structure is generated by linking pixel values to objects of a data network according to the class network and process hierarchy. Objects associated with pixel values at different depths of the biopsy tissue are used to determine the number, volume and distance between cell components. In one application, fluorescence signals that mark Her2/neural genes and centromeres of chromosome seventeen are counted to diagnose breast cancer. Her2/neural genes that overlap one another or that are covered by centromeres can be accurately counted. Signal artifacts that do not mark genes can be identified by their excessive volume.

    摘要翻译: 分析系统自动分析和计数使用荧光原位杂交(FISH)标记的活检组织中存在的荧光信号。 系统的用户指定类网络的类和进程层次结构的处理步骤。 然后在三维中获取活检组织的图像切片中的像素值。 通过根据类网络和进程层次将像素值链接到数据网络的对象来生成计算机实现的网络结构。 与活检组织不同深度处的像素值相关联的物体用于确定细胞组分之间的数量,体积和距离。 在一个应用中,计数标记Her2 /神经基因的荧光信号和17号染色​​体的着丝粒被诊断为乳腺癌。 可以准确计算Her2 /彼此重叠或被着丝粒覆盖的神经基因。 不标记基因的信号伪影可以通过其过量的体积来识别。