Abstract:
Method of extracting liquid hydrocarbons from oil-containing stone or sand, wherein the oil-containing stone or the oil-containing sand undergoes hydrogenating, low temperature carbonization in a reactor at temperatures of 450.degree. to 520.degree. C. and a pressure of approximately 50 bar through the action of carbon monoxide, hydrogen and steam, and wherein the hydrocarbons are separated from the resulting gaseous, low temperature carbonization mixture. The low temperature carbonization mixture from the reactor is cooled in a first separation stage to a temperature of approximately 350.degree. C. to condense the less volatile hydrocarbons. The separated, liquid phase is fed to a solids separator and placed in contact with a circulating gas of carbon dioxide and a C.sub.6 /C.sub.7 hydrocarbon fraction. The low temperature carbonization mixture containing uncondensed gases and more volatile hydrocarbons are washed in a second separation stage with water and cooled to approximately 250.degree. C. Gas containing hydrogen separated from the volatile hydrocarbons is fed at least partly to the reactor again. Carbon monoxide is obtained from the solids through the action of carbon dioxide, contained in hot, combustion gases. This carbon monoxide together with carbon dioxide of the combustion gases is fed to the reactor.
Abstract:
A process for extracting hydrocarbons from oil shale comprising the steps of subjecting oil shale under superatmospheric pressure in the presence of hydrogen and steam, to low temperature hydrogenating distillation; separating the resulting fluid distillation mixture into liquid and gaseous products; and returning water and hydrogen separated from the fluid distillation mixture to the low temperature distillation; in which:heat is drawn-off from the hot oil shale, after treatment in a low temperature hydrogenating distillation reactor, by the shale being sprayed wtih water whereby saturated steam is produced in decreasing pressure stages;the saturated steam of the pressure stages and water extracted during product separation are fed into the individual stages of a multi-stage compressor driven by a gas turbine, and are then delivered via a steam supply line to the reactor;the gas turbine is fuelled by supplying separated-off gaseous distillation products thereto; andthe exhaust gases of the gas turbine are fed to a heat exchanger arranged in the steam supply line.
Abstract:
An arrangement for extracting crude oil from oil shale comprising: a low temperature carbonization reactor; a processing means for feeding a slurry of oil shale, solvent and hydrogen into the low temperature carbonization reactor; a separating means for separating the resulting gaseous low temperature carbonization mixture from the used oil shale and for separating the low temperature carbonization mixture into gaseous and liquid low temperature carbonization products; a gas turbine the exhaust gas outlet of which is connected to two heat exchangers, one of which heat exchangers is disposed in a circulation system for a scavenging gas, which circulation system includes a separating reactor (which forms part of said separating means) in which in use the scavenging gas flows upwardly in counterflow to the oil shale for separation of the fluid low temperature carbonization mixture from the used oil shale, and the other of which heat exchangers is disposed between the low temperature carbonization reactor and said separating reactor; the low temperature carbonization reactor including a fluidizing cooler with a fluidized bed means for feeding used oil shale from the separating reactor to the fluidized bed and means for feeding turbine exhaust gas from either or both of said two heat exchangers to the fluidized bed for fluidizing the bed.
Abstract:
The present invention concerns a method for measuring the thickness of any deposit of material on the inner wall of a structure conducting a fluid stream of hydrocarbons, the method comprising the steps of: applying a first heat pulse or continuous heating to at least one first section of the structure removing deposits on the inner wall of the first section of the structure; applying a second heat pulse to both the first section of the structure and at least one second section of the structure, the first and second sections being spaced apart, which heat pulse does not loosen any deposit of material in the second section; measuring the temperature of the wall of the structure or the fluid during the second heat pulse at both the first and second sections; and determining the thickness of any deposit of material on the inner wall of the structure at the second section based on the measured temperatures. The present invention also relates to a corresponding device and arrangement.
Abstract:
A method of measuring the thickness of any deposit of material (28) on an inner wall (12) of a structure (14). The method comprises: (a) causing vibrations in the structure; (b) detecting said vibrations in the structure; (c) determining a resonance frequency of the structure based on the detected vibrations; and (d) determining the thickness of any deposit of material on the inner wall of the structure based on the determined resonance frequency.
Abstract:
A locking device, especially for switch cabinets, comprising a lock mounted on the cabinet body and provided with a locking latch, as well as a lock holder mounted on the door and having an arresting pin for latching with the locking latch, whereby the rotatably mounted locking latch is biased by a tipping spring not only in its locking position in which it engages the arresting pin but also in its opening position, and whereby a rotatable securing lever for blocking pivoting movement of the locking latch is biased by a spring into its blocking position for the locking latch, the securing lever being pivotable, against the force of the spring, into its release position for the locking latch by an electromagnet through which current flows for providing a readiness of the locking latch to open.
Abstract:
Dimer alcohol bis-sulfates, trimer alcohol tris-sulfates and ether sulfates thereof are prepared by reacting dimer alcohols, trimer alcohols, or alkylene oxide adducts thereof with a sulfating agent, and then neutralizing the reaction product with an aqueous base material.
Abstract:
The invention relates to a dermal plaster for the transdermal provision of nitroglycerin comprising a carrier film and a removable protective film and an adhesive mass containing nitroglycerine on the basis of a cross-linked acrylate-vinyl acetate copolymer in which the monomer mix used for polymerization consists essentially of 21 to 40% wt. vinyl acetate, 55 to 70% wt. of an acrylic acid C2-8 alkyl ester and 3 to 10% wt. of an acrylic acid C2-4 hydroxyalkyl ester and which is cross-linked by heating and the removal of any solvents present after the addition of a cross-linking agent and the nitroglycerin.
Abstract:
The present invention concerns a method for measuring the thickness of any deposit of material on the inner wall of a structure conducting a fluid stream of hydrocarbons, the method comprising the steps of: applying a first heat pulse or continuous heating to at least one first section of the structure removing deposits on the inner wall of the first section of the structure; applying a second heat pulse to both the first section of the structure and at least one second section of the structure, the first and second sections being spaced apart, which heat pulse does not loosen any deposit of material in the second section; measuring the temperature of the wall of the structure or the fluid during the second heat pulse at both the first and second sections; and determining the thickness of any deposit of material on the inner wall of the structure at the second section based on the measured temperatures. The present invention also relates to a corresponding device and arrangement.
Abstract:
A method is provided for measurement of the thickness of any deposit of material on the inner wall of a pipeline at least partly filled with a medium including hydrocarbons, the medium being for instance oil or natural gas, wherein the method includes: projecting infrared light onto the inner wall of the pipeline along a line corresponding to the intersection between the inner wall of the pipeline and a cross-sectional plane of the pipeline; registering an image of the infrared light projected on the inner wall of the pipeline; and determining the thickness of any deposit of material on the inner wall of the pipeline based on the registered image.