摘要:
A multilayer nonwoven structure is described where the nonwoven structure comprises at least two spun bond layers and at least one easily meltable layer. The easily meltable layer is located between the at least two spunbond layers. The easily meltable layer is comprised of a polymer having a melting point at least 20° C. less than the melting point of the polymer which comprises the surface of the fibers which comprise the spun bond layer, or is made from a polymer which is readily absorbs some form of radiation. Under bonding conditions, the fibers which make up the easily meltable layer can be melted to form a film, thereby improving bather properties of the nonwoven structure.
摘要:
A multilayer nonwoven structure is described where the nonwoven structure comprises at least two spun bond layers and at least one easily meltable layer. The easily meltable layer is located between the at least two spunbond layers. The easily meltable layer is comprised of a polymer having a melting point at least 20° C. less than the melting point of the polymer which comprises the surface of the fibers which comprise the spun bond layer, or is made from a polymer which is readily absorbs some form of radiation. Under bonding conditions, the fibers which make up the easily meltable layer can be melted to form a film, thereby improving bather properties of the nonwoven structure.
摘要:
Fabricated articles are disclosed which comprise a polypropylene impact copolymer. The propylene impact copolymer composition comprises from 60 to 90 percent by weight of the impact copolymer composition of a matrix phase, which can be a homopolymer polypropylene or random polypropylene copolymer having from 0.1 to 7 mol percent of units derived from ethylene or C4-C10 alpha olefins. The propylene impact copolymer composition also comprises from 10 to 40 percent by weight of the impact copolymer composition of a dispersed phase, which comprises a propylene/alpha-olefin copolymer having from 6 to 40 mol percent of units derived from ethylene or C4-C10 alpha olefins, wherein the dispersed phase has a comonomer content which is greater than the comonomer content in the matrix phase. The propylene impact copolymer composition is further characterized by having the ratio of the matrix MFR to the dispersed phase MFR being 1.2 or less. The fabricated articles of the present invention can be made at high speeds and are characterized by their soft feel, as compared to fabricated articles made from other propylene impact copolymers.
摘要:
The present invention relates to nonwoven webs or fabrics. In particular, the present invention relates to nonwoven webs having superior abrasion resistance and excellent softness characteristics. The nonwoven materials comprise monocomponent fibers having a surface comprising a polyethylene, said nonwoven material having a fuzz/abrasion of less than 0.7 mg/cm3. The present invention is also related to fibers having a diameter in a range of from 0.1 to 50 denier, said fibers comprising a polymer blend, wherein the polymer blend comprises: from 40 weight percent to 80 weight percent (by weight of the polymer blend) of a first polymer which is a homogeneous ethylene/α-olefin interpolymer having: a melt index of from about 1 to about 1000 grams/10 minutes, and a density of from 0.870 to 0.950 grams/centimeter3, and from 74 to 20 percent by weight of a second polymer which is an ethylene homopolymer or an ethylene/α-olefin interpolymer having a melt index of from about 1 to about 1000 grams/10 minutes, and preferably a density which is at least 0.01 grams/centimeter3 greater than the density of the first polymer.
摘要:
The present invention relates to nonwoven webs or fabrics. In particular, the present invention relates to nonwoven webs having superior abrasion resistance and excellent softness characteristics. The nonwoven materials comprise fibers made from of a polymer blend of isotactic polypropylene, reactor grade propylene based elastomers or plastomers, and optionally, a homoge-neously branched ethylene/alpha olefin plastomer or elastomer. The isotactic polypropylene can be homopolymer polypropylene, and random copolymers of propylene and one or more alpha-olefins. The reactor grade propylene based elastomers or plastomers plastomer have a molecular weight distribution of less than about 3.5, and a heat of fusion less than about 90 joules/gm. In particular, the reactor grade propylene based elastomers or plastomers contains from about 3 to about 15 percent by weight of units derived from an ethylene, and a melt flow rate of from about 2 to about 200 grams/10 minutes. The present invention also relates to cold drawn textured fibers comprising of a polymer blend of isotactic polypropylene and reactor grade propylene based elastomers or plastomers.
摘要:
The present invention relates to nonwoven webs or fabrics. In particular, the present invention relates to nonwoven webs having superior abrasion resistance and excellent softness characteristics. The nonwoven materials comprise monocomponent fibers having a surface comprising a polyethylene, said nonwoven material having a fuzz/abrasion of less than 0.7 mg/cm3. The present invention is also related to fibers having a diameter in a range of from 0.1 to 50 denier, said fibers comprising a polymer blend, wherein the polymer blend comprises: from 40 weight percent to 80 weight percent (by weight of the polymer blend) of a first polymer which is a homogeneous ethylene/α-olefin interpolymer having: a melt index of from about 1 to about 1000 grams/10 minutes, and a density of from 0.870 to 0.950 grams/centimeter3, and from 74 to 20 percent by weight of a second polymer which is an ethylene homopolymer or an ethylene/α-olefin interpolymer having a melt index of from about 1 to about 1000 grams/10 minutes, and preferably a density which is at least 0.01 grams/centimeter3 greater than the density of the first polymer.
摘要:
The present invention relates to a new bicomponent fiber, a nonwoven fabric comprising said new bicomponent fiber and sanitary articles made therefrom. The bicomponent fiber contains a polyethylene-based resin forming at least part of the surface of the fiber longitudinally continuously and is characterized by a Co-monomer Distribution Constant greater than about 45, a recrystallization temperature between 85° C. and 110° C., a tan delta value at 0.1 rad/sec from about 15 to 50, and a complex viscosity at 0.1 rad/second of 1400 Pa.sec or less. The nonwoven fabric comprising the new bicomponent fiber according to the instant invention are not only excellent in softness, but also high in strength, and can be produced in commercial volumes at lower costs due to higher thoughputs and requiring less energy.
摘要:
This invention is a method for fabricating fibers by melt-blowing a melt of a molecularly self-assembling material, the melt being at a temperature of from 130° C. to 220° C., thereby forming a fiber set having a distribution of fiber diameters wherein at least 95% of the fibers have a diameter of less than about 3 microns. The invention further comprises collecting the fiber set so as to form a fibrous non-woven web.
摘要:
The present invention relates to a new bicomponent fiber, a nonwoven fabric comprising said new bicomponent fiber and sanitary articles made therefrom. The bicomponent fiber contains a polyethylene-based resin forming at least part of the surface of the fiber longitudinally continuously and is characterized by a Co-monomer Distribution Constant greater than about 45, a recrystallization temperature between 85° C. and 110° C., a tan delta value at 0.1 rad/sec from about 15 to 50, and a complex viscosity at 0.1 rad/second of 1400 Pa.sec or less. The nonwoven fabric comprising the new bicomponent fiber according to the instant invention are not only excellent in softness, but also high in strength, and can be produced in commercial volumes at lower costs due to higher thoughputs and requiring less energy.
摘要:
This invention is a method for fabricating fibers by melt-blowing a melt of a molecularly self-assembling material, the melt being at a temperature of from 130° C. to 220° C., thereby forming a fiber set having a distribution of fiber diameters wherein at least 95% of the fibers have a diameter of less than about 3 microns. The invention further comprises collecting the fiber set so as to form a fibrous non-woven web.