摘要:
A sea-island composite fiber includes island component fibers having a circumscribed circle diameter of 10 to 1000 nm, a circumscribed circle diameter variation of 1 to 20%, a non-circularity of 1.2 to 5.0, and a non-circularity variation of 1 to 10%.
摘要:
A method of making a biocompatible, implantable medical device, including a vascular closure device is disclosed. The method includes forming a biocompatible polymer into at least one fiber and randomly orienting the at least one fiber into a fibrous structure having at least one interstitial spaces. Polymeric materials may be utilized to fabricate any of these devices. The polymeric materials may include additives such as drugs or other bioactive agents as well as antibacterial agents. In such instances, at least one agent, in therapeutic dosage, is incorporated into at least one of the fibrous structure and the at least one fiber.
摘要:
A sea-island composite fiber has an island component which is ultrafine fibers having a noncircular cross-section, the ultrafine fibers being uniform in the degree of non-circularity and in the diameter of the circumscribed circle. The sea-island composite fiber includes an easily soluble polymer as the sea component and a sparingly soluble polymer as the island component, and the island component has a circumscribed-circle diameter of 10-1,000 nm, a dispersion in circumscribed-circle diameter of 1-20%, a degree of non-circularity of 1.2-5.0, and a dispersion in the degree of non-circularity of 1-10%.
摘要:
A biocompatible material may be configured into any number of implantable medical devices including a vascular closure device. The vascular closure device includes a fibrous structure formed from at least one randomly oriented fiber, the randomly oriented fiber comprising at least one polymer, and at least one agent, in therapeutic dosage, incorporated into at least one of the fibrous structure and the at least one randomly oriented fiber.
摘要:
The present invention provides an aggregate of nanofibers having less spread of single fiber fineness values that can be used in wide applications without limitation to the shape and the kind of the polymer, and a method for manufacturing the same. The present invention is an aggregate of nanofibers made of a thermoplastic polymer having single fiber fineness by number average in a range from 1×10−7 to 2×10−4 dtex and single fibers of 60% or more in fineness ratio have single fiber fineness in a range from 1×10−7 to 2×10−4 dtex.
摘要:
The invention provides methods for the preparation of nonwoven spunbonded fabrics and various materials prepared using such spunbonded fabrics. The method generally comprises extruding multicomponent fibers having an islands in the sea configuration such that upon removal of the sea component, the island components remain as micro- and nanofibers. The method further comprises mechanically entangling the multicomponent fibers to provide a nonwoven spunbonded fabric exhibiting superior strength and durability without the need for thermal bonding.
摘要:
The present invention discloses environmentally degradable multicomponent fibers. The configuration of the multicomponent fibers may be side-by-side, sheath-core, segmented pie, islands-in-the-sea, or any combination of configurations. Each component of the fiber will comprise destructurized starch and/or a biodegradable thermoplastic polymer. The present invention is also directed to nonwoven webs and disposable articles comprising the environmentally degradable multicomponent fibers. The nonwoven webs may also contain other synthetic or natural fibers blended with the multicomponent fibers of the present invention.
摘要:
Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs. The fibers and fibrous articles have further applications in flushable personal care and cleaning products, disposable protective outerwear, and laminating binders.
摘要:
Disclosed are water-dispersible fibers derived from sulfopolyesters having a Tg of at least 25° C. The fibers may contain a single sulfopolyester or a blend of a sulfopolyester with a water-dispersible or water-nondispersible polymer. Also disclosed are multicomponent fibers comprising a water dispersible sulfopolyester having a Tg of at least 57° C. and a water non-dispersible polymer. The multicomponent fibers may be used to produce microdenier fibers. Fibrous articles may be produced from the water-dispersible fibers, multicomponent fibers, and microdenier fibers. The fibrous articles include water-dispersible and microdenier nonwoven webs, fabrics, and multilayered articles such as wipes, gauze, tissue, diapers, panty liners, sanitary napkins, bandages, and surgical dressings. Also disclosed is a process for water-dispersible fibers, nonwoven fabrics, and microdenier webs. The fibers and fibrous articles have further applications in flushable personal care and cleaning products, disposable protective outerwear, and laminating binders.