摘要:
Provided is a phase frequency detector for use in a phase locked loop (PLL) or a delay locked loop (DLL), the phase frequency detector including: an UP signal output unit having a first stage operated according to a reference clock delayed by a predetermined time and a reset signal, a second stage operated according to the reference clock and an output of the first stage, and an inverter for inverting an output of the second stage; a DOWN signal output unit having: a first stage operated according to an outer clock delayed by a predetermined time and the reset signal, a second stage operated according to the outer clock and an output of the first stage, and an inverter for inverting an output of the second stage; and a logic gate logically combining the output of the second stage of the UP signal output unit and the output of the second stage of the DOWN signal output unit to generate the reset signal, thereby a phase range of the input signal with which an effective control signal can be obtained is wide so that low power consumption and low noise characteristics can be obtained due to fast phase lock, low power consumption of a dynamic logic, and fast signal transmission.
摘要:
Provided is a phase frequency detector for use in a phase locked loop (PLL) or a delay locked loop (DLL), the phase frequency detector including: an UP signal output unit having a first stage operated according to a reference clock delayed by a predetermined time and a reset signal, a second stage operated according to the reference clock and an output of the first stage, and an inverter for inverting an output of the second stage; a DOWN signal output unit having: a first stage operated according to an outer clock delayed by a predetermined time and the reset signal, a second stage operated according to the outer clock and an output of the first stage, and an inverter for inverting an output of the second stage; and a logic gate logically combining the output of the second stage of the UP signal output unit and the output of the second stage of the DOWN signal output unit to generate the reset signal, thereby a phase range of the input signal with which an effective control signal can be obtained is wide so that low power consumption and low noise characteristics can be obtained due to fast phase lock, low power consumption of a dynamic logic, and fast signal transmission.
摘要:
Provided are a pulse signal generator for UWB radio transception and a radio transceiver having the same. The pulse signal generator includes: an envelope generator generating a plurality of envelope signals; a local oscillator array composed of a plurality of high frequency oscillators, each outputting two oscillation signals having a phase difference from each other; a multiplier array receiving the envelope signals and the oscillation signals and outputting signals obtained by respectively multiplying the envelope signals by the oscillation signals; and an I channel adder and a Q channel adder outputting an I channel pulse signal and a Q channel pulse signal by adding output signals having the same phase components among the signals output from the multiplier array, respectively.
摘要:
Provided are a pulse signal generator for UWB radio transception and a radio transceiver having the same. The pulse signal generator includes: an envelope generator generating a plurality of envelope signals; a local oscillator array composed of a plurality of high frequency oscillators, each outputting two oscillation signals having a phase difference from each other; a multiplier array receiving the envelope signals and the oscillation signals and outputting signals obtained by respectively multiplying the envelope signals by the oscillation signals; and an I channel adder and a Q channel adder outputting an I channel pulse signal and a Q channel pulse signal by adding output signals having the same phase components among the signals output from the multiplier array, respectively.
摘要:
Provided is a direct-conversion frequency mixer for down converting a radio frequency (RF) signal into a baseband signal, in which a single phase RF signal and a quadrature location oscillation (quadrature LO) signal are used to generate the baseband signal, the frequency mixer comprising a first frequency mixing unit that uses quadrature LO signals having respective phases of 0 degrees and 180 degrees to directly down-convert the single phase RF signal into the in-phase baseband signal, and a second frequency mixing unit that uses quadrature LO signals having respective phases of 90 degrees and 270 degrees to directly down-convert the single phase RF signal into the quadrature-phase baseband signal, whereby drains and sources of the transistor for receiving the quadrature LO signal and the transistor for receiving the RF signal are connected in common, thus enabling low power source voltage driving.
摘要:
In the adaptive wireless network system having a central optimizer and a method thereof, and in the record medium capable of being read through a computer having a writing of a program to realize the inventive method, in which information for a use wave environment of a corresponding subnet is gained from an access point regardless of a sort of wireless communication instruments so as to apply an optimum transmission/reception type of the corresponding subnet thereto; the system includes an optimizing unit for selecting optimum transmission/reception types of sub networks and transmitting them; an access point determining unit for providing node activity representative data and activity representative data of access point itself, to the optimizing unit, and determining it as the optimum transmission/reception type; and a communication node determining unit for re-determining its own transmission/reception type according to a requirement of the access point determining unit.
摘要:
Provided is a linearization apparatus of a triode region type operational transconductance amplifier that can provide a wide linear input range even when a differential pair input transistor having a short channel length is used at a low power supply voltage. The linearization apparatus of the triode region type operational transconductance amplifier includes: a first transconductor unit for receiving differential pair input voltages through differential pair input transistors and generating a basic transconductance; and a second transconductor unit for receiving the same differential pair input voltages, generating distortion transconductances, and overlapping the basic transconductace with the distortion transconductance for extending a linear range of a final transconductance.
摘要:
there is provided a spreading apparatus using a child orthogonal variable spreading factor (OVSF) code pair, including: a channel condition information receiving unit for receiving channel condition information including a channel condition metric; a switch controlling unit for receiving the channel condition information from the channel condition information receiving unit and transferring data stream according to the received channel station information; a first spreading unit for receiving the data stream from the switching controlling unit, and spreading the data stream using a single OVSF code; and a second spreading unit for receiving the data stream from the switching controlling unit, and spreading the data stream using a child OVSF code pair.
摘要:
Provided is a linearization apparatus of a triode region type operational transconductance amplifier that can provide a wide linear input range even when a differential pair input transistor having a short channel length is used at a low power supply voltage. The linearization apparatus of the triode region type operational transconductance amplifier includes: a first transconductor unit for receiving differential pair input voltages through differential pair input transistors and generating a basic transconductance; and a second transconductor unit for receiving the same differential pair input voltages, generating distortion transconductances, and overlapping the basic transconductace with the distortion transconductance for extending a linear range of a final transconductance.
摘要:
The present invention relates to an accurate method using laser welding for mounting an optical focusing lens utilized in a semi-conductor laser module for optical transmission and optical amplification through an optical fiber and a laser module so produced. The laser module includes an aligned laser diode, a lens fixture mounting the laser diode, a focusing lens mounted within a lens housing which in turn is mounted by a lens ring to the lens fixture. In the method, the steps include aligning mutual positions between the laser diode and the optical focusing lens in the vertical and horizontal directions so that the magnitude of the optical signal output from the optical fiber is maximized after the distance between the optical focusing lens and the optical fiber is adjusted and fixed to obtain a maximum optical coupling efficiency between the laser diode and the optical fiber. Next a laser-welding step is performed at an interval between the lens housing and the lens ring. The mutual positions between the laser diode and the optical focusing lens are aligned in the vertical and horizontal directions so that the magnitude of the optical signal output from the optical fiber is maximized. Finally a laser-welding step is performed at an interval between the lens fixture and the lens ring.