摘要:
An apparatus includes a differential cascode amplifier including a first transistor and a second transistor. The apparatus further includes a transistor including a source terminal coupled to a gate terminal of the first transistor of the differential cascode amplifier. The transistor also includes a drain terminal coupled to a gate terminal of the second transistor of the differential amplifier.
摘要:
Aspects of the invention may include receiving a first input signal and a second input signal via respective first and second input transistors. A biasing signal, generated by a cascode bias generator, tracks the first input signal, where the biasing signal has a fixed offset with respect to the first input signal. The biasing signal may be applied to the first and second cascode transistors that may be cascoded to the first and second input transistors, respectively.
摘要:
The present disclosure relates to a power amplifier, the power amplifier including a first amplifier configured to form a common source by allowing sources of a plurality of first transistors to be commonly connected, a second amplifier configured to form a common source by allowing sources of a plurality of second transistors to be commonly connected and to be respectively connected in a cascode structure to the plurality of first transistors of the first amplifier, and a controller configured to be connected to a common gate node to short-circuit second harmonic impedance of the common gate.
摘要:
A radio frequency receiver of the present invention removes out-of-band jamming signals and interference signals without SAW filters. The radio frequency receiver includes: a low noise amplifier amplifying a signal received through an antenna; a second order intermodulation cancellation unit removing second order intermodulation caused by an out-of-band jamming or interference signal included in the signal output from the low noise amplifier; a passive mixer unit converting a frequency of the signal output from the second order intermodulation cancellation unit; and a low pass filter unit removing an out-of-band jamming or interference signal included in the signal output from the passive mixer unit and delivering the signal with the out-of-band jamming or interference signal removed therefrom to a transimpedance amplifier.
摘要:
A radio frequency receiver of the present invention removes out-of-band jamming signals and interference signals without SAW filters. The radio frequency receiver includes: a low noise amplifier amplifying a signal received through an antenna; a second order intermodulation cancellation unit removing second order intermodulation caused by an out-of-band jamming or interference signal included in the signal output from the low noise amplifier; a passive mixer unit converting a frequency of the signal output from the second order intermodulation cancellation unit; and a low pass filter unit removing an out-of-band jamming or interference signal included in the signal output from the passive mixer unit and delivering the signal with the out-of-band jamming or interference signal removed therefrom to a transimpedance amplifier.
摘要:
A differential amplifier provides an amplifier circuit including two differential pairs. A first differential pair is connected in series to a second differential pair. The second differential pair is connected in a crosswise manner at least indirectly to a differential output signal of the first differential pair. The first differential pair and the second differential pair form a first differential current path and a second differential current path. A first emulation device is connected in parallel to the first current path. A second emulation device is connected in parallel to the second current path.
摘要:
Embodiments of a SAW-less RF receiver front-end that includes a frequency translated notch filter (FTNF) are presented. An FTNF includes a passive mixer and a baseband impedance. The baseband impedance includes capacitors that form a low-Q band-stop filter. The passive mixer is configured to translate the baseband impedance to a higher frequency. The translated baseband impedance forms a high-Q notch filter and is presented at the input of the FTNF. In an embodiment, the capacitors are implemented using MOS capacitors. In another embodiment, the capacitors are partially formed from MOS capacitors and fringe capacitors. The FTNF can be fully integrated in CMOS IC technology (or others, e.g., Bipolar, BiCMOS, and SiGe) and applied in wireless receiver systems including EDGE/GSM, Wideband Code Division Multiple Access (WCDMA), Bluetooth, and wireless LANs (e.g., IEEE 802.11).
摘要:
Amplifiers with improved linearity and noise performance are described. In an exemplary design, an apparatus includes first through sixth transistors. The first transistor receives an input signal and provides an amplified signal. The second transistor receives the amplified signal and provides signal drive for an output signal. The third transistor receives the input signal and provides an intermediate signal. The fourth transistor provides bias for the third transistor in a high linearity mode. The fifth transistor receives the intermediate signal and provides signal drive for the output signal in a low linearity mode. The third and fourth transistors form a deboost path that is enabled in the high linearity mode to improve linearity. The third and fifth transistors form a cascode path that is enabled in the low linearity mode to improve gain and noise performance. The sixth transistor generates distortion component used to cancel distortion component from the first transistor.
摘要:
An amplifier circuit includes a current source that is connected between a power supply voltage and an output node and that is turned on when a switching control signal takes a first value and is turned off when the switching control signal takes a second value; a grounded voltage control current source whose amount of current is controlled by an input voltage; a cascode transistor connected between the voltage control current source and the output node; a boost amplifier connected between a gate electrode and a source electrode of the cascode transistor; and a switch that is connected between an output node of the boost amplifier and a bias voltage and that is turned on for a predetermined period of time when a value of the switching control signal is switched from the second value to the first value, to forcefully rise the boost amplifier.
摘要:
Embodiments of a SAW-less RF receiver front-end that includes a frequency translated notch filter (FTNF) are presented. An FTNF includes a passive mixer and a baseband impedance. The baseband impedance includes capacitors that form a low-Q band-stop filter. The passive mixer is configured to translate the baseband impedance to a higher frequency. The translated baseband impedance forms a high-Q notch filter and is presented at the input of the FTNF. In an embodiment, the capacitors are implemented using MOS capacitors. In another embodiment, the capacitors are partially formed from MOS capacitors and fringe capacitors. The FTNF can be fully integrated in CMOS IC technology (or others, e.g., Bipolar, BiCMOS, and SiGe) and applied in wireless receiver systems including EDGE/GSM, Wideband Code Division Multiple Access (WCDMA), Bluetooth, and wireless LANs (e.g., IEEE 802.11).