摘要:
A communication signal is communicated between an implantable medical device including an implant transceiver and an external unit including an external unit transceiver. At least one of the transceivers includes a receiver capable of sampling a communication channel for the communication signal at times based on a macro sampling interval and a micro sampling interval. The sampling includes a series of micro samples. The duration of the series of micro samples is less than the macro sampling interval.
摘要:
Medical data is communicated from a transmitter of an external unit to a receiver of an implantable medical device. The transmitter generates a preamble signal having encoded configuration data that informs the receiver of configuration settings to be used in receiving the medical data. The receiver detects the preamble and validates a modulation pattern of the preamble. Configuration data is decoded from the preamble signal and the receiver configuration is adjusted to receive the medical data.
摘要:
A fluid infusion system as described herein includes a number of local “body network” devices, such as an infusion pump, a handheld monitor or controller, a physiological sensor, and a bedside or hospital monitor. The body network devices can be configured to support communication of status data, physiological information, alerts, control signals, and other information between one another. In addition, the body network devices can be configured to support networked communication of status data, physiological information, alerts, control signals, and other information between the body network devices and “external” devices, systems, or communication networks. Such external communication allows the infusion system to be extended beyond the traditional short-range user environment.
摘要:
A system, method and program are disclosed for achieving rapid bit synchronization in low power medical device systems. Messages are transmitted via telemetry between a medical device and a communication device. The synchronization scheme uses a portion of a unique preamble bit pattern to identify the communication device allowing for economical communications with a minimum expenditure of energy. A special set of preamble bit patterns are utilized for their unique synchronization properties making them particularly suited for rapid bit synchronization. These unique preamble bit patterns further provide simplification to the preamble error detection logic.