摘要:
Disclosed is a composition for forming a top antireflective film, which comprises at least one fluorine-containing compound and a quaternary ammonium compound represented by the formula (1) [wherein at least one of R1, R2, R3, and R4 represents a hydroxyl group or an alkanol group, and the others independently represent a hydrogen or an alkyl group having 1 to 10 carbon atoms; and X− represents a hydroxyl group, a halide ion or a sulfate ion], and optionally a water-soluble polymer, an acid, a surfactant and an aqueous solvent. The composition for forming a top antireflective film can exhibit the same levels of functions as those of conventional top antireflective film-forming compositions when applied in a smaller amount.
摘要:
Disclosed is a composition for forming a top antireflective film, which comprises at least one fluorine-containing compound and a quaternary ammonium compound represented by the formula (1) [wherein at least one of R1, R2, R3, and R4 represents a hydroxyl group or an alkanol group, and the others independently represent a hydrogen or an alkyl group having 1 to 10 carbon atoms; and X− represents a hydroxyl group, a halide ion or a sulfate ion], and optionally a water-soluble polymer, an acid, a surfactant and an aqueous solvent. The composition for forming a top antireflective film can exhibit the same levels of functions as those of conventional top antireflective film-forming compositions when applied in a smaller amount.
摘要:
The present invention provides a composition for forming a top anti-reflection coating having a low refractive index, realizing a gradual swing curve and giving a small swing ratio. This composition comprises a solvent and an anthracene skeleton-containing polymer having a hydrophilic group. The composition forms an anti-reflection coating on a photoresist film, and can be used in a photolithographic process for forming a pattern by use of light having a wavelength of 160 to 260 nm.
摘要:
There is provided a method for forming a superfine pattern, which can simply produce a superfine pattern with high mass productivity.The method comprises the steps of forming a first convex pattern, on a film to be treated, forming a spacer formed of a silazane-containing resin composition on the side wall of the convexes constituting the first convex pattern, and forming a superfine pattern using as a mask the spacer or a resin layer disposed around the spacer. The spacer is formed by curing an evenly coated resin composition only in its part around the first convex pattern. According to this method for pattern formation, unlike the conventional method, a superfine pattern can be formed.
摘要:
There is provided a method for forming a superfine pattern, which can simply produce a superfine pattern with high mass productivity.The method comprises the steps of forming a first convex pattern, on a film to be treated, forming a spacer formed of a silazane-containing resin composition on the side wall of the convexes constituting the first convex pattern, and forming a superfine pattern using as a mask the spacer or a resin layer disposed around the spacer. The spacer is formed by curing an evenly coated resin composition only in its part around the first convex pattern. According to this method for pattern formation, unlike the conventional method, a superfine pattern can be formed.
摘要:
The object of the present invention is to provide an anti-reflective coating composition having excellent coating properties while maintaining performance as an anti-reflective film. An anti-reflective coating composition comprising at least the following components (A), (B), (C), (D), and (E) and a production method for a pattern using the anti-reflective coating composition, (A) perfluoroalkyl•alkylenesulfonic acid represented by the following formula (1): CnF2n+1(CH2CH2)mSO3H (1) (wherein, n represents an integer from 1 to 20, and m represents an integer from 0 to 20); (B) organic amine; (C) water-soluble polymer; (D) perfluoroalkylethyl group containing compound represented by the following formula (2): CkF2k+1CH2CH2—X—Y (2) (wherein, k represents an integer from 1 to 20, x represents a single bond or a divalent linking group, y represents an anionic group or a nonionic group, and this compound has a structure different from that of the component (A)); and (E) water.
摘要翻译:本发明的目的是提供一种具有优异涂层性能的抗反射涂料组合物,同时保持作为抗反射膜的性能。 至少包含以下组分(A),(B),(C),(D)和(E)的抗反射涂料组合物和使用该抗反射涂料组合物的图案的制备方法,(A) 由下式(1)表示的全氟烷基亚烷基磺酸:C n2 N 2n + 1(CH 2 CH 2 CH 2) (1)(其中,n表示1〜20的整数,m表示0〜20的整数);(3) (B)有机胺; (C)水溶性聚合物; (D)由下式(2)表示的含全氟烷基乙基的化合物:C k 2 F 2k + 1 CH 2 CH 2 -XY(2)(其中,k表示1至20的整数,x表示单键或二价连接基团,y表示阴离子基团或非离子基团,并且该化合物的结构不同于 (A)); 和(E)水。
摘要:
The composition for preventing development-defects containing (1) an ammonium salt, a tetraalkylammonium salt or a C1 to C4 alkanolamine salt of C4 to C15 perfluoroalkylcarboxylic acid, C4 to C10 perfluoroalkylsulfonic acid and perfluoroadipic acid, or (2) a fluorinated alkyl quaternary ammonium salt of inorganic acid, wherein said surfactant is formed at the equivalent ratio of acid to base of 1:1-1:3 is applied on a chemically amplified photoresist coating on a substrate having a diameter of 8 inches or more. The chemically amplified photoresist coating is baked before and/or after applying the composition for preventing development-defects described above. Then, the baked coating with the development-defect preventing composition coating is exposed to light, post-exposure-baked, and developed. By this process, compared with the case of not using the composition for preventing development-defects, the amount of reduction in film thickness of the photoresist subsequent to development treatment is made further bigger by 100 Å to 600 Å, and the development-defects on a substrate having a diameter of 8 inches or more is reduced as well as a resist pattern having a good cross section form can be formed without T-top form etc.
摘要:
The composition for preventing development-defects containing (1) an ammonium salt, a tetraalkylammonium salt or a C1 to C4 alkanolamine salt of C4 to C15 perfluoroalkylcarboxylic acid, C4 to C10 perfluoroalkylsulfonic acid and perfluoroadipic acid, or (2) a fluorinated alkyl quaternary ammonium salt of inorganic acid, wherein said surfactant is formed at the equivalent ratio of acid to base of 1:1-1:3 is applied on a chemically amplified photoresist coating on a substrate having a diameter of 8 inches or more. The chemically amplified photoresist coating is baked before and/or after applying the composition for preventing development-defects described above. Then, the baked coating with the development-defect preventing composition coating is exposed to light, post-exposure-baked, and developed. By this process, compared with the case of not using the composition for preventing development-defects, the amount of reduction in film thickness of the photoresist subsequent to development treatment is made further bigger by 100 Å to 600 Å, and the development-defects on a substrate having a diameter of 8 inches or more is reduced as well as a resist pattern having a good cross section form can be formed without T-top form etc.
摘要:
An anti-reflective coating film is formed by applying on a chemically amplified photoresist film an anti-reflective coating composition comprising an alkali-soluble fluorine-containing polymer, an acid, an amine and a solvent capable of dissolving these components and having a pH of 7 or less. The formed anti-reflective coating film can serve to prevent multiple reflections within the photoresist film, increase the amount of reduction in thickness of the photoresist film upon development with a developer after exposure, and form a pattern having a rectangular cross-sectional pattern and not having T-top or round top.
摘要:
The composition for preventing development-defects containing (1) an ammonium salt, a tetraalkylammonium salt or a C1 to C4 alkanolamine salt of C4 to C15 perfluoroalkylcarboxylic acid, C4 to C10 perfluoroalkylsulfonic acid and perfluoroadipic acid, or (2) a fluorinated alkyl quaternary ammonium salt of inorganic acid, wherein said surfactant is formed at the equivalent ratio of acid to base of 1:1-1:3 is applied on a chemically amplified photoresist coating on a substrate having a diameter of 8 inches or more. The chemically amplified photoresist coating is baked before and/or after applying the composition for preventing development-defects described above. Then, the baked coating with the development-defect preventing composition coating is exposed to light, post-exposure-baked, and developed. By this process, compared with the case of not using the composition for preventing development-defects, the amount of reduction in film thickness of the photoresist subsequent to development treatment is made further bigger by 100 Å to 600 Å, and the development-defects on a substrate having a diameter of 8 inches or more is reduced as well as a resist pattern having a good cross section form can be formed without T-top form etc.