Abstract:
A method for overlapping spectrum amplification includes receiving an optical signal and splitting the optical signal into a first split signal having a first wavelength band and a second split signal having a second wavelength band. The splitting results in a band gap between the first wavelength band and the second wavelength band. The method further includes delaying the first split signal by a threshold period of time relative to the second split signal and combining the first split signal and the second split signal, resulting in a combined signal having the first wavelength band and the second wavelength band without the band gap therebetween. The path difference between the first split signal along the first signal path and the second split signal along the second signal path is within a threshold multipath interference compensation range.
Abstract:
Aspects of the invention provide transmitters and receivers for managing multiple optical signals. High order modulation, such as phase and/or amplitude modulation, is used to achieve multiple bits per symbol by transporting multiple asynchronous data streams in an optical transport system. One or more supplemental multiplexing techniques such as time division multiplexing, polarization multiplexing and sub-carrier multiplexing may be used in conjunction with the high order modulation processing. This may be done in various combinations to realize a highly spectrally efficient multi-data stream transport mechanism. The system receives a number of asynchronous signals which are unframed and synchronized, and then reframed and tagged prior to the high order modulation. Differential encoding may also be performed. Upon reception of the multiplexed optical signal, the receiver circuitry may employ either direct detection without a local oscillator or coherent detection with a local oscillator.
Abstract:
A method for overlapping spectrum amplification includes receiving an optical signal and splitting the optical signal into a first split signal having a first wavelength band and a second split signal having a second wavelength band. The splitting results in a band gap between the first wavelength band and the second wavelength band. The method further includes delaying the first split signal by a threshold period of time relative to the second split signal and combining the first split signal and the second split signal, resulting in a combined signal having the first wavelength band and the second wavelength band without the band gap therebetween. The path difference between the first split signal along the first signal path and the second split signal along the second signal path is within a threshold multipath interference compensation range.
Abstract:
A communication system includes a first and second trunk terminals, a plurality of communication trunks disposed along a floor of a body of water, and power feed equipment. Each communication trunk couples the first trunk terminal to the second trunk terminal and includes at least one signal amplifier configured to amplify a signal conveyed along the corresponding communication trunk. The power feed equipment is coupled to the plurality of communication trunks and is configured to deliver power along each communication trunk to power the at least one signal amplifier of the communication trunk. The power feed equipment is also configured to receive a shunt fault notification identifying an electrical shunt fault along a faulted communication trunk of the plurality of communication trunks. In response to the shunt fault notification, the power feed equipment is configured to cease delivery of power along at least one communication trunk.
Abstract:
A reconfigurable optical add/drop multiplexer (ROADM) includes a plurality of interconnected ROADM blocks. Each ROADM block includes an ingress switchable-gain amplifier, an output power detector coupled to an output of the ingress switchable gain amplifier, and a wavelength-selective switch coupled to the output of the ingress switchable gain amplifier. Each ROADM block includes a plurality of add/drop blocks coupled to the wavelength-selective switches of the plurality of ROADM blocks. The ROADM includes a controller configured to receive an indication of an output signal power from the output power detector and adjust gain and equalization parameters of the ingress switchable-gain amplifier based on the received indication of the output signal power.
Abstract:
Apparatus and methods are provided for application layer optimization in a modem data network. The optimization incorporates variable rate transmission across one or more optical data channels. Data throughput is maximized by enabling quality of service profiles on a per transmission channel basis. According to one aspect, a system is provided in which the application layer is aware of and controls the underlying transmission rate and quality of the transmission. This enables the system to fully utilize the transmission capacity of the channel. The application layer may map different applications to different transmission classes of service. The services can be classified based on data throughput rate, guaranteed error rates, latency and cost, among other criteria. This provides flexibility to the application layer to map some loss tolerant applications to a lower cost (per bit) transmission class.
Abstract:
Aspects of the invention provide transmitters and receivers for managing multiple optical signals. High order modulation, such as phase and/or amplitude modulation, is used to achieve multiple bits per symbol by transporting multiple asynchronous data streams in an optical transport system. One or more supplemental multiplexing techniques such as time division multiplexing, polarization multiplexing and sub-carrier multiplexing may be used in conjunction with the high order modulation processing. This may be done in various combinations to realize a highly spectrally efficient multi-data stream transport mechanism. The system receives a number of asynchronous signals which are unframed and synchronized, and then reframed and tagged prior to the high order modulation. Differential encoding may also be performed. Upon reception of the multiplexed optical signal, the receiver circuitry may employ either direct detection without a local oscillator or coherent detection with a local oscillator.
Abstract:
A reconfigurable optical add/drop multiplexer (ROADM) includes a plurality of interconnected ROADM blocks. Each ROADM block includes an ingress switchable-gain amplifier, an output power detector coupled to an output of the ingress switchable gain amplifier, and a wavelength-selective switch coupled to the output of the ingress switchable gain amplifier. Each ROADM block includes a plurality of add/drop blocks coupled to the wavelength-selective switches of the plurality of ROADM blocks. The ROADM includes a controller configured to receive an indication of an output signal power from the output power detector and adjust gain and equalization parameters of the ingress switchable-gain amplifier based on the received indication of the output signal power.