摘要:
A processing system includes a memory and a first core configured to process applications. The first core includes a first cache. The processing system includes a mechanism configured to capture a sequence of addresses of the application that miss the first cache in the first core and to place the sequence of addresses in a storage array; and a second core configured to process at least one software algorithm. The at least one software algorithm utilizes the sequence of addresses from the storage array to generate a sequence of prefetch addresses. The second core issues prefetch requests for the sequence of the prefetch addresses to the memory to obtain prefetched data and the prefetched data is provided to the first core if requested.
摘要:
A processing system includes a memory and a first core configured to process applications. The first core includes a first cache. The processing system includes a mechanism configured to capture a sequence of addresses of the application that miss the first cache in the first core and to place the sequence of addresses in a storage array; and a second core configured to process at least one software algorithm. The at least one software algorithm utilizes the sequence of addresses from the storage array to generate a sequence of prefetch addresses. The second core issues prefetch requests for the sequence of the prefetch addresses to the memory to obtain prefetched data and the prefetched data is provided to the first core if requested.
摘要:
A processing system includes a memory and a first core configured to process applications. The first core includes a first cache. The processing system includes a mechanism configured to capture a sequence of addresses of the application that miss the first cache in the first core and to place the sequence of addresses in a storage array; and a second core configured to process at least one software algorithm. The at least one software algorithm utilizes the sequence of addresses from the storage array to generate a sequence of prefetch addresses. The second core issues prefetch requests for the sequence of the prefetch addresses to the memory to obtain prefetched data and the prefetched data is provided to the first core if requested.
摘要:
Embodiments that dynamically reorganize data of cache lines in non-uniform cache access (NUCA) caches are contemplated. Various embodiments comprise a computing device, having one or more processors coupled with one or more NUCA cache elements. The NUCA cache elements may comprise one or more banks of cache memory, wherein ways of the cache are horizontally distributed across multiple banks. To improve access latency of the data by the processors, the computing devices may dynamically propagate cache lines into banks closer to the processors using the cache lines. To accomplish such dynamic reorganization, embodiments may maintain “direction” bits for cache lines. The direction bits may indicate to which processor the data should be moved. Further, embodiments may use the direction bits to make cache line movement decisions.
摘要:
Embodiments that dynamically reorganize data of cache lines in non-uniform cache access (NUCA) caches are contemplated. Various embodiments comprise a computing device, having one or more processors coupled with one or more NUCA cache elements. The NUCA cache elements may comprise one or more banks of cache memory, wherein ways of the cache are horizontally distributed across multiple banks. To improve access latency of the data by the processors, the computing devices may dynamically propagate cache lines into banks closer to the processors using the cache lines. To accomplish such dynamic reorganization, embodiments may maintain “direction” bits for cache lines. The direction bits may indicate to which processor the data should be moved. Further, embodiments may use the direction bits to make cache line movement decisions.
摘要:
The present invention provides for a computer network method and system that applies “hysteresis” to an active queue management algorithm. If a queue is at a level below a certain low threshold and a burst of packets arrives at a network node, then the probability of dropping the initial packets in the burst is recalculated, but the packets are not dropped. However, if the queue level crosses beyond a hysteresis threshold, then packets are discarded pursuant to a drop probability.Also, according to the present invention, queue level may be decreased until it becomes less than the hysteresis threshold, with packets dropped per the drop probability until the queue level decreases to at least a low threshold. In one embodiment, an adaptive algorithm is also provided to adjust the transmit probability for each flow together with hysteresis to increase the packet transmit rates to absorb bursty traffic.
摘要:
A system and method to optimize runahead operation for a processor without use of a separate explicit runahead cache structure. Rather than simply dropping store instructions in a processor runahead mode, store instructions write their results in an existing processor store queue, although store instructions are not allowed to update processor caches and system memory. Use of the store queue during runahead mode to hold store instruction results allows more recent runahead load instructions to search retired store queue entries in the store queue for matching addresses to utilize data from the retired, but still searchable, store instructions. Retired store instructions could be either runahead store instructions retired, or retired store instructions that executed before entering runahead mode.
摘要:
A system and method to optimize runahead operation for a processor without use of a separate explicit runahead cache structure. Rather than simply dropping store instructions in a processor runahead mode, store instructions write their results in an existing processor store queue, although store instructions are not allowed to update processor caches and system memory. Use of the store queue during runahead mode to hold store instruction results allows more recent runahead load instructions to search retired store queue entries in the store queue for matching addresses to utilize data from the retired, but still searchable, store instructions. Retired store instructions could be either runahead store instructions retired, or retired store instructions that executed before entering runahead mode.
摘要:
A method for estimating power dissipated by a processor core processing a workload-includes analyzing a reference test case to generate a reference workload characteristic, analyzing an actual workload to generate an actual workload characteristic, performing a power analysis for the reference test case to establish a reference power dissipation value and estimating an actual workload power dissipation value responsive to the actual and reference workload characteristics and the reference power dissipation value.
摘要:
A method for estimating power dissipated by processor core processing a workload includes analyzing a reference test case to generate a reference workload characteristic, analyzing an actual workload to generate an actual workload characteristic, performing a power analysis for the reference test case to establish a reference power dissipation value and estimating an actual workload power dissipation value responsive to the actual and reference workload characteristics and the reference power dissipation value.