摘要:
The present invention is directed to methods and apparatuses for performing temporal scanning using ultra-short pulsewidth lasers in which only minimal (micro-scale) mechanical movement is required. The invention also relates to methods for obtaining high-accuracy timing calibration, on the order of femtoseconds. A dual laser system is disclosed in which the cavity of one or more of the lasers is dithered, by using a piezoelectric element. A Fabry-Perot etalon is used to generate a sequence of timing pulses used in conjunction with a laser beam produced by the laser having the dithered laser cavity. A correlator correlates a laser pulse from one of the lasers with the sequence of timing pulses to produce a calibrated time scale. The methods and apparatuses of the present invention are applicable to many applications requiring rapid scanning and time calibration, including, but not limited to metrology, characterization of charge dynamics in semiconductors, electro-optic testing of ultrafast electronic and optoelectronic devices, optical time domain reflectometry, and electro-optic sampling oscilloscopes.
摘要:
An intracavity resonant Fabry-Perot saturable absorber (R-FPSA) induces modelocking in a laser such as a fiber laser. An optical limiter such as a two photon absorber (TPA) can be used in conjunction with the R-FPSA, so that Q-switching is inhibited, resulting in laser output that is cw modelocked. By using both an R-FPSA and a TPA, the Q-switched modelocked behavior of a fiber laser is observed to evolve into cw modelocking.
摘要:
An intracavity resonant Fabry-Perot saturable absorber (R-FPSA) induces modelocking in a laser such as a fiber laser. An optical limiter such as a two photon absorber (TPA) can be used in conjunction with the R-FPSA, so that Q-switching is inhibited, resulting in laser output that is cw modelocked. By using both an R-FPSA and a TPA, the Q-switched modelocked behavior of a fiber laser is observed to evolve into cw modelocking.
摘要:
The present invention is directed to methods and apparatuses for performing temporal scanning using ultra-short pulsewidth lasers in which only minimal (micro-scale) mechanical movement is required. The invention also relates to methods for obtaining high-accuracy timing calibration, on the order of femtoseconds. A dual laser system is disclosed in which the cavity of one or more of the lasers is dithered, by using a piezoelectric element. A Fabry-Perot etalon is used to generate a sequence of timing pulses used in conjunction with a laser beam produced by the laser having the dithered laser cavity. A correlator correlates a laser pulse from one of the lasers with the sequence of timing pulses to produce a calibrated time scale. The methods and apparatuses of the present invention are applicable to many applications requiring rapid scanning and time calibration, including, but not limited to metrology, characterization of charge dynamics in semiconductors, electro-optic testing of ultrafast electronic and optoelectronic devices, optical time domain reflectometry, and electro-optic sampling oscilloscopes.
摘要:
An intracavity resonant Fabry-Perot saturable absorber (R-FPSA) induces modelocking in a laser such as a fiber laser. An optical limiter such as a two photon absorber (TPA) can be used in conjunction with the R-FPSA, so that Q-switching is inhibited, resulting in laser output that is cw modelocked. By using both an R-FPSA and a TPA, the Q-switched modelocked behavior of a fiber laser is observed to evolve into cw modelocking.
摘要:
The present invention is directed to methods and apparatuses for performing temporal scanning using ultra-short pulsewidth lasers in which only minimal (micro-scale) mechanical movement is required. The invention also relates to methods for obtaining high-accuracy timing calibration, on the order of femtoseconds. A dual laser system is disclosed in which the cavity of one or more of the lasers is dithered, by using a piezoelectric element. A Fabry-Perot etalon is used to generate a sequence of timing pulses used in conjunction with a laser beam produced by the laser having the dithered laser cavity. A correlator correlates a laser pulse from one of the lasers with the sequence of timing pulses to produce a calibrated time scale. The methods and apparatuses of the present invention are applicable to many applications requiring rapid scanning and time calibration, including, but not limited to metrology, characterization of charge dynamics in semiconductors, electro-optic testing of ultrafast electronic and optoelectronic devices, optical time domain reflectometry, and electro-optic sampling oscilloscopes.
摘要:
An intracavity resonant Fabry-Perot saturable absorber (R-FPSA) induces modelocking in a laser such as a fiber laser. An optical limiter such as a two photon absorber (TPA) can be used in conjunction with the R-FPSA, so that Q-switching is inhibited, resulting in laser output that is cw modelocked. By using both an R-FPSA and a TPA, the Q-switched modelocked behavior of a fiber laser is observed to evolve into cw modelocking.
摘要:
The present invention is directed to methods and apparatuses for performing temporal scanning using ultra-short pulsewidth lasers in which only minimal (micro-scale) mechanical movement is required. The invention also relates to methods for obtaining high-accuracy timing calibration, on the order of femtoseconds. A dual laser system is disclosed in which the cavity of one or more of the lasers is dithered, by using a piezoelectric element. A Fabry-Perot etalon is used to generate a sequence of timing pulses used in conjunction with a laser beam produced by the laser having the dithered laser cavity. A correlator correlates a laser pulse from one of the lasers with the sequence of timing pulses to produce a calibrated time scale. The methods and apparatuses of the present invention are applicable to many applications requiring rapid scanning and time calibration, including, but not limited to metrology, characterization of charge dynamics in semiconductors, electro-optic testing of ultrafast electronic and optoelectronic devices, optical time domain reflectometry, and electro-optic sampling oscilloscopes.
摘要:
The present invention is directed to methods and apparatuses for performing temporal scanning using ultra-short pulsewidth lasers in which only minimal (micro-scale) mechanical movement is required. The invention also relates to methods for obtaining high-accuracy timing calibration, on the order of femtoseconds. A dual laser system is disclosed in which the cavity of one or more of the lasers is dithered, by using a piezoelectric element. A Fabry-Perot etalon is used to generate a sequence of timing pulses used in conjunction with a laser beam produced by the laser having the dithered laser cavity. A correlator correlates a laser pulse from one of the lasers with the sequence of timing pulses to produce a calibrated time scale. The methods and apparatuses of the present invention are applicable to many applications requiring rapid scanning and time calibration, including, but not limited to metrology, characterization of charge dynamics in semiconductors, electro-optic testing of ultrafast electronic and optoelectronic devices, optical time domain reflectometry, and electro-optic sampling oscilloscopes.
摘要:
An apparatus and method for delivery of high peak power pulse through an optical fiber to an optical device includes an ultrashort pulsed laser source which produces ultrashort optical pulses having high peak power. Prior to transmitting the optical pulses through a delivery optical fiber, the pulse width of the optical pulses is stretched, forming chirped optical pulses having a lower peak power. The stretched pulses are transmitted through an optical fiber which delivers the pulse to an optical device requiring ultrashort, high peak power optical pulses. The optical fiber and/or an output unit coupled to the end of the optical fiber introduces a dispersion which compensates for the dispersion introduced by the pulsed laser source and the stretcher, and delivers a recompressed optical pulse to an optical device. The optical fiber delivery system preferably pre-compensates for the dispersion introduced by optical components within the optical device, so that the optical pulses are fully recompressed at a point of interest within the optical device, such as at a specimen or at a detector. The optical fiber delivery system may include a frequency converter either before or after the delivery optical fiber. The frequency converter allows optical pulses having frequencies other than that generated by the laser source to be delivered to the optical device in an efficient manner.