摘要:
A method for advanced crank spark with blend spark retard for an internal combustion engine includes the steps of selecting whether a spark in an engine cylinder will be fired on a predetermined first or second crank edge during an engine start mode, firing the spark on the second crank edge during the engine start mode if the second crank edge is selected, firing the spark on the first crank edge if the first crank edge is selected, determining whether the internal combustion engine is in the engine start mode based on engine speed, continuing to select whether to fire the spark on the predetermined first crank edge or the predetermined second crank edge if the internal combustion engine is in the engine start mode based on engine speed less than the predetermined speed, and retarding the spark from a first spark level to a hold start level at a predetermined rate, holding the spark at the hold spark level for a hold period, and advancing the spark to the first spark level at the predetermined rate, if the internal combustion engine is in the engine start mode based on engine speed greater than the predetermined speed.
摘要:
A fuel control system is provided for enhancing the fueling strategy of a vehicle at start up when fueling is being supplemented with purge vapors from the fuel tank. The system includes monitoring the purge vapor flow rate from the purge vapor control system to the engine at start-up. A dynamic crankshaft fuel control fuel multiplier is then calculated based on engine roughness. If the engine is operating rough during purge vapor fueling, the amount of injected fuel is adjusted according to the fuel multiplier. Once oxygen sensor feedback is available, the dynamic crankshaft fuel control fuel multiplier is recalculated based on the oxygen sensor goal voltage. If necessary, the amount of injected fuel may be readjusted with the updated fuel multiplier. Once the engine is warm, the purge vapor fueling stops and the present methodology ends.
摘要:
A method is provided for controlling the delivery of fuel to an engine of an automotive vehicle equipped with a dynamic crankshaft fuel control system and an oxygen sensor feedback based fuel control system. The method includes determining an averaged combustion metric from the dynamic crankshaft fuel control system. The combustion metric is compared to an allowable engine roughness value and a dynamic crankshaft fuel control fuel multiplier is adjusted based on the comparison via a proportional-integral-derivative control calculation. Thereafter, the integral term of the dynamic crankshaft fuel control system's proportional-integral-derivative control calculation is stored. If it is time to switch fuel control from the dynamic crankshaft fuel control system to the oxygen sensor feedback fuel control system, the stored integral term of the dynamic crankshaft fuel control system's fueling multiplier is transferred to the proportional-integral-derivative calculation of the oxygen sensor feedback fuel control system. As such, the last integral term used in determining the fuel multiplier of the dynamic crankshaft fuel control system is used as the first integral term determining the fuel multiplier of in the oxygen sensor feedback fuel control system. As such, the transition from one fuel control system to the other is smoothed.
摘要:
A methodology of computing a learned combustion stability value and applying the learned combustion stability value to control engine operation is provided. Engine speed is sensed for each expected firing of individual cylinders of the engine. The difference in engine speed for a selected cylinder firing and a cylinder firing occurring two cylinder firings earlier is determined to provide an expected acceleration value. The difference between successive expected acceleration values is computed. A learned combustion related value is determined as a function of the difference in the successive learned acceleration values and is an indication of engine roughness. The operation of the engine is controlled as a function of the learned combustion related value. The learned combustion stability value is advantageously employed so as to modify the fuel injection to an internal combustion engine, especially following a cold engine start so as to reduce hydrocarbon emissions. This is accomplished by modifying a program target fuel injection value as a function of the learned combustion related value so as to reduce the fuel injected into the engine by fuel injectors.
摘要:
A method of altitude compensation of exhaust gas recirculation in an intake manifold for an internal combustion engine includes the steps of calculating vacuum at sea level, calculating vacuum at present altitude of the engine, determining whether the calculated vacuum at sea level is equal to the calculated vacuum at present altitude, and correcting the exhaust gas recirculation in the intake manifold if the calculated vacuum at sea level does not equal the calculated vacuum at present altitude.
摘要:
A method of estimating exhaust gas recirculation in an intake manifold for an internal combustion engine includes the steps of determining a volumetric efficiency value of the intake manifold, determining whether a speed of the engine is accelerating, getting a manifold unfilling constant if the speed of the engine is not accelerating, getting a manifold filling constant if the speed of the engine is accelerating, calculating a K-factor based on the volumetric efficiency value and either the manifold filling constant or manifold unfilling constant, and using the K-factor to modify spark of the engine.
摘要:
A method of load and speed modifying on fuel lean-out for an internal combustion engine includes the steps of sensing a speed of the engine, determining an engine speed modifier as a function of current sensed engine speed, sensing a manifold absolute pressure (MAP) of an intake manifold of the engine, determining an engine load modifier as a function of current sensed MAP, adding the determined engine speed modifier and engine load modifier together to yield a speed/load modifier, and applying the speed/load modifier value to a fuel pulsewidth value of fuel injectors for the engine and reducing the amount of fuel injected into the engine by the fuel injectors.
摘要:
A method of catalyst purging (run-time) fuel lean-out for an internal combustion engine including the steps of determining whether the engine is in a throttle deceleration condition or a MAP deceleration condition, sensing a speed of the engine, determining whether the current sensed engine speed is above a predetermined speed if the engine is in a throttle or MAP deceleration condition, determining a magnitude of a run-time lean-out multiplier (RTLEAN) value if the current sensed engine speed is above the predetermined speed, and applying the determined RTLEAN value to a fuel pulsewidth value of fuel injectors for the engine and reducing the amount of fuel injected into the engine by the fuel injectors.
摘要:
A method of averaging coolant temperature for an internal combustion engine in an automotive vehicle includes the steps of sensing coolant temperature of the engine based on an output signal of a coolant temperature sensor, determining an initial value of coolant temperature based on the output signal from the coolant temperature sensor, storing the determined initial value as an initial coolant temperature value (CLTMP1) and as an averaged coolant temperature value (AVCT), periodically updating the AVCT value, and using the AVCT value to control the output of fuel injectors of the engine.
摘要:
A method of adjusting idle spark for an individual cylinder of an internal combustion engine in an automotive vehicle including the steps of determining a crankshaft acceleration for an individual cylinder of the internal combustion engine and determining an average acceleration error for the individual cylinder based on the determined crankshaft acceleration. The method also includes the steps of determining an adaptive spark advance for the individual cylinder based on the determined average acceleration error and determining a new spark advance for the individual cylinder based on the determined adaptive spark advance and a nominal spark advance. The method further includes the steps of adjusting idle spark for the individual cylinder based on the new spark advance for the individual cylinder.