Abstract:
Systems and methods are provided for adjusting an engine powertrain component responsive to ambient humidity, the ambient humidity based on vehicle position in a region, clock time ambient temperature, and historical humidity data for that region for a current time of year. This may be accomplished without relying on a costly, and often, temperamental physical humidity sensor. Training modules and cloud updates may further increase the accuracy of the virtual humidity sensor of the present disclosure.
Abstract:
A system module is provided for recirculating exhaust gases from an internal combustion engine to an intake manifold of the internal combustion engine. The module includes a body (12) including a passageway (41) between an exhaust gas inlet (32) and an exhaust gas outlet (34). An orifice (36) constricts the flow of exhaust gases proximate the exhaust gas outlet. A differential pressure sensor (38) is constructed and arranged to sense differential pressure across the orifice. A manifold absolute pressure sensor (42) is constructed and arranged to sense vacuum pressure associated with the exhaust gas outlet. A first hose (40) is coupled with the body and provides the differential pressure sensor with vacuum pressure on a first side of the orifice. A second hose (44) is coupled with the body and provides the manifold pressure sensor with vacuum pressure. The first and second hoses are integral with the system module.
Abstract:
Exhaust gas post treatment system for nitrogen oxide and particle reduction of an internal combustion engines operated with excess air. An oxidation catalytic converter is disposed in the exhaust gas stream of the engine for converting at least a portion of the nitric oxide of the exhaust gas into nitrogen dioxide. A metering device adds reduction agent to the exhaust gas stream downstream of the oxidation catalytic converter and/or to a partial exhaust gas stream branched off upstream of the oxidation catalytic converter and returned to the exhaust gas stream downstream thereof. The reduction agent is ammonia or a material that releases ammonia downstream of the supply location due to the hot exhaust gas. A particle separator or filter is disposed in the exhaust gas stream downstream of the oxidation catalytic converter and of the supply location, and converts carbon particles accumulated in the separator or filter into carbon monoxide, carbon dioxide, nitrogen and nitric oxide with the aid of nitrogen dioxide in the exhaust gas stream. An SCR catalytic converter is disposed downstream of the separator or filter for reducing nitrogen oxides in the exhaust gas stream into nitrogen and water vapor with the aid of ammonia or released ammonia by selective catalytic reduction.
Abstract:
A heat exchanger including flat tubes having cooling passages for a gas and a bypass for the gas separate from the cooling passages, and coolant channels defined between every two flat tubes adjacent the tube passages and spaced from the bypass of the tubes. The tubes define a cooled area adjacent the passages and an uncooled area adjacent the bypass substantially spaced from the channels.
Abstract:
A solenoid plunger system for an electropneumatic pressure transducer, comprising at least partly—in a casing which focuses magnetic field lines M, in particular in the form of an iron casing—a solenoid plunger and a core, in particular in the form of an iron core or magnetic core, wherein the solenoid plunger comprises at least one recess on the side facing towards the core, and/or the core comprises at least one recess on the side facing towards the solenoid plunger, and an air gap is provided between the solenoid plunger and the core; the air gap is adjustable by relative movement between the solenoid plunger and the core, during which relative movement the solenoid plunger can, at least partly, be moved into/out of the first recess in the core, and/or the core can be moved, at least partly, into/out of the recess in the solenoid plunger; the casing comprises at least a first shell and a yoke, each of high magnetic permeability, wherein the first shell is arranged between the solenoid plunger and at least one coil and/or at least one magnet, and the air gap is arranged in a region between the first shell and the yoke; and the casing comprises a second shell of high magnetic permeability between the first shell and the yoke, wherein said second shell comprises at least one recess, in particular in the shape of an annular groove, on its side facing away from the core, for focusing magnetic field lines M from the yoke onto the core, and in that in the region of the recess of said second shell, the yoke and/or an adjustment member, in particular in the form of an adjustment ring, of high magnetic permeability is/are moveable relative to said second shell, for adjusting the magnetically effective length 1 of the recess of the second shell.
Abstract:
According to the invention, an EGR control apparatus of an engine includes intake ports to which an intake passage is connected, the intake ports opening into each combustion chamber of the engine, an EGR port to which an EGR passage branching out from an exhaust passage is connected, the EGR port opening into each combustion chamber of the engine, an electrically-operated compressor disposed in the EGR passage for regulating pressure at which EGR gas is introduced into each combustion chamber, and an EGR control valve disposed in the EGR passage at a point downstream of the electrically-operated compressor for controlling the amount of EGR gas introduced into each combustion chamber. The EGR passage branches out from the exhaust passage at a point downstream of an emission control device disposed in the exhaust passage.
Abstract:
A method for diagnosing the operating condition of an internal combustion engine exhaust gas recycling valve. The method acquires a measurement value of a reference position of the recycling valve at a predetermined time corresponding to a normally closed position of the valve, calculates the difference between the acquired reference value and a reference value acquired during a diagnostic cycle previously carried out, and compares the calculated difference with a threshold value for detecting opening of the valve.
Abstract:
A connection and a method of providing a connection includes a fluid tight communication between a valve and a tube. The valve includes a first surface, a second surface, a cavity, and an aperture extending through the valve between the first and second surfaces. The tube includes a first portion, a second portion and a third portion between the first and second portions. The first portion penetrates the first surface and extends through the aperture into the cavity. The third portion is deformed so as to engage the second surface.
Abstract:
An exhaust gas recirculation systems directs exhaust gasses from an exhaust manifold to an intake manifold of an internal combustion engine. The exhaust gasses travel from the exhaust manifold, first passing through a flow control valve and then through a measuring orifice before entering the intake manifold. Pressure upstream of the orifice is used, along with correction pressure downstream of the orifice, to measure and control exhaust gas flow. Further, manifold pressure is determined from downstream pressure and the used along with the measured exhaust gas flow to calculated a cylinder air charge amount.
Abstract:
Under a partial load, a pumping loss is reduced by a stratified combustion to enhance a fuel consumption, and during the maximum output operation, the output is increased by a premixture combustion, and the output of an engine is controlled, thereby enhancing the drivability. Under the partial load, an ignition source is provided in the vicinity of a fuel injection valve, and after the fuel is injected, the mixture is ignited, and a resulting flame is caused by a spray of the fuel to spread into a cylinder, thereby effecting a stratified combustion. When the load increases, so that soot and so on are produced in the stratified combustion, the fuel injection is effected a plurality of times in a divided manner, and a premixture is produced within the cylinder by the front-half injection, and a flame, produced by the latter-half injection, is injected into the cylinder to burn this premixture.