摘要:
An organic light emitting diode display includes a substrate, a first pixel and a second pixel on the substrate, the first pixel and the second pixel have different sizes, a first driving voltage line and a second driving voltage line connected to the first pixel and the second pixel, respectively, and the first driving voltage line is capable of applying a first driving voltage to the first pixel and the second driving voltage line is capable of applying a second driving voltage to the second pixel. The second pixel is bigger than the first pixel, and the second driving voltage is less than the first driving voltage.
摘要:
An organic light emitting diode (OLED) display includes a substrate where a plurality of pixels are formed, a first pixel defining layer on the substrate, the first pixel defining layer dividing the plurality of pixels, a connection wire on the first pixel defining layer, the connection wire electrically connecting two adjacent pixels, and a second pixel defining layer on the first pixel defining layer, the second pixel defining layer covering the connection wire.
摘要:
A pixel includes an organic light emitting diode, a first transistor that is connected to a first power source and that supplies a driving current according to a corresponding data voltage to the organic light emitting diode, a second transistor that is connected to a scan line and that transmits the corresponding data voltage from a data line to a driving transistor according to a scan signal transmitted from the scan line, and a first capacitor including one electrode connected to a gate electrode of the first transistor. The first capacitor stores the corresponding data voltage as a first voltage and a size of the first capacitor is in a range of about 2 times to about 4 times a size of a gate insulating layer of the first transistor.
摘要:
An organic light emitting diode (OLED) display includes a light-emitting region including an organic emission layer and a non-light-emitting region neighboring the light-emitting region. The OLED display includes a first electrode positioned at the light-emitting region and including a plurality of division regions divided according to a virtual cutting line crossing the light-emitting region, an organic emission layer positioned on the first electrode, a second electrode positioned on the organic emission layer, a driving thin film transistor connected to the first electrode, and a plurality of input terminals positioned at the non-light-emitting region and respectively connecting between each of division regions and the driving thin film transistor.
摘要:
An organic light-emitting display apparatus includes a plurality of pixels, each defined by a scan line, a data line, and a power supply line, a plurality of control lines branching off of one wire in a first direction and simultaneously transferring control signals to the plurality of pixels; and a plurality of repair bridges placed between neighboring ones of the plurality of control lines, each of the plurality of repair bridges including a first bridge connected to one of the neighboring ones of the plurality of control lines and a second bridge connected to another one of the neighboring control lines.
摘要:
A display apparatus, such as an organic light emitting diode (“OLED”) display, is driven by thin film transistors (“TFTs”), including a driving TFT and a switching TFT, and a pixel electrode. The display apparatus includes an amorphous silicon layer for the switching TFT and a microcrystalline silicon or polycrystalline silicon layer for the driving TFT. The amorphous silicon layer and the microcrystalline silicon layer are separated by an insulating layer. The apparatus provides product reliability and high image quality. A method of manufacturing the apparatus is characterized by reducing processing steps, and using a special mask which is a half tone mask or a slit mask adapted to forming a source electrode and a drain electrode of the switching TFT or the driving TFT and a semiconductor layer during a photolithographic process.
摘要:
A display device includes a plurality of pixels, each pixel including an organic light emitting diode (OLED) and a driving transistor, a sustain power supply unit applying a first sustain voltage to a plurality of data lines connected to the plurality of pixels, and a data driver applying one of a data signal and a second sustain voltage to the plurality of data lines. For each pixel, the sustain power supply unit applies the first sustain voltage as a first level voltage to reset a gate voltage of the driving transistor and applies the first sustain voltage as a second level voltage to increase the gate voltage of the driving transistor. When an anode voltage of the OLED in each pixel is discharged to be reset, the anode voltage of the OLED is controlled according to a voltage difference between the first level voltage and the second level voltage.
摘要:
An organic light emitting display apparatus and a method of inspecting the same, the organic light emitting display apparatus including a plurality of sub-pixels; a plurality of conductive line portions connected to the sub-pixels, the plurality of conductive line portions including at least two conductive lines connected in parallel to one another; and inspection thin film transistors (TFTs) disposed adjacent to one end and both ends of at least one conductive line of the conductive lines connected in parallel to one another.
摘要:
A display apparatus includes a plurality of first wirings extending in a first direction and a plurality of second wirings extending in a second direction crossing the first direction. Differing first identification patterns are present on the plurality of corresponding first wirings to identify the plurality of first wirings, and differing second identification patterns are present on the plurality of corresponding second wirings to identify the plurality of second wirings.
摘要:
In a thin-film transistor (“TFT”) array substrate for an X-ray detector and an X-ray detector having the TFT array substrate, the TFT array substrate includes a gate wiring, a gate insulating layer, an active layer, a data wiring, a photodiode, an organic insulating layer and a bias wiring. The gate wiring is formed on an insulating substrate and includes a gate line and a gate electrode. The gate insulating layer covers the gate wiring. The active layer is formed on the gate insulating layer. The data wiring is formed on the gate insulating layer and includes a data line, source and drain electrodes. The photodiode includes lower and upper electrodes, and a photoconductive layer. The organic insulating layer covers the data wiring and the photodiode. The bias wiring is formed on the organic insulating layer. Thus, an aperture ratio and reliability are enhanced.