摘要:
Systems and methods are described that provide a distributed restoration signaling protocol for shared mesh restoration with standbys for transparent optical networks.
摘要:
Systems and methods are described that provide a distributed restoration signaling protocol for shared mesh restoration with standbys for transparent optical networks.
摘要:
Systems and methods are described that provide a distributed restoration signaling protocol for shared mesh restoration with standbys for transparent optical networks.
摘要:
Systems and methods are described that provide a distributed restoration signaling protocol for shared mesh restoration with standbys for transparent optical networks.
摘要:
Systems and methods are described for restoring wavelength services in mesh networks using pre-configured, standby lightpaths. The standby lightpaths are pre-cross-connected lightpaths that provide connectivity between switching nodes having a fiber link of degree-2 or higher. The restoration method overcomes the problem of optical impairments for long haul connections, avoids wavelength power balancing delays, provides wavelength conversion for capacity efficiency, and allows sharing of links across nonsimultaneous failures.
摘要:
An arrangement provides low cost path protection in an optical communications network. The arrangement has a portion 3 that provides (broadcasts) an outbound optical signal, and at least first and second transmitting portions 202, 206 transmit the outbound optical signal simultaneously onto at least first and second respective mutually distinct optical pathways 231, 232. Meanwhile, a selection arrangement 204 selects among plural incoming optical signals (via 1, 5) according to a SELECT control signal 228 to provide a selected signal, and an analyzer 222 analyzes characteristics of the selected signal to provide the SELECT control signal 228.
摘要:
An arrangement provides low cost path protection in an optical communications network. The arrangement has a portion 3 that provides (broadcasts) an outbound optical signal, and at least first and second transmitting portions 202, 206 transmit the outbound optical signal simultaneously onto at least first and second respective mutually distinct optical pathways 231, 232. Meanwhile, a selection arrangement 204 selects among plural incoming optical signals (via 1, 5) according to a SELECT control signal 228 to provide a selected signal, and an analyzer 222 analyzes characteristics of the selected signal to provide the SELECT control signal 228.
摘要:
An arrangement provides low cost path protection in an optical communications network. The arrangement has a portion 3 that provides (broadcasts) an outbound optical signal, and at least first and second transmitting portions 202, 206 transmit the outbound optical signal simultaneously onto at least first and second respective mutually distinct optical pathways 231, 232. Meanwhile, a selection arrangement 204 selects among plural incoming optical signals (via 1, 5) according to a SELECT control signal 228 to provide a selected signal, and an analyzer 222 analyzes characteristics of the selected signal to provide the SELECT control signal 228.
摘要:
An arrangement provides low cost path protection in an optical communications network. The arrangement has a portion 3 that provides (broadcasts) an outbound optical signal, and at least first and second transmitting portions 202, 206 transmit the outbound optical signal simultaneously onto at least first and second respective mutually distinct optical pathways 231, 232. Meanwhile, a selection arrangement 204 selects among plural incoming optical signals (via 1, 5) according to a SELECT control signal 228 to provide a selected signal, and an analyzer 222 analyzes characteristics of the selected signal to provide the SELECT control signal 228.
摘要:
A method includes receiving a restoration indicator associated with a path that includes an optical cross-connect (OXC). The OXC is reconfigured from a standby configuration to a restoration configuration in response to the restoration indicator. An optical signal received in a first direction at a first wavelength is optically regenerated to produce an optical signal in the first direction at a second wavelength. An optical signal received in a second direction at the second wavelength is optically regenerated to produce an optical signal in the second direction at the first wavelength.