摘要:
A method for facilitating infiltration of an infiltrant material into a TSP material during re-bonding of the TSP material to a substrate, by enhancing the porosity of the TSP material near the interface with the substrate is provided. Cutting elements formed by such method and downhole tools including such cutting elements are also provided.
摘要:
Thermally stable polycrystalline constructions comprise a diamond body joined with a substrate, and may have a nonplanar interface. The construction may include an interlayer interposed between the diamond body and substrate. The diamond body preferably has a thickness greater than about 1.5 mm, and comprises a matrix phase of bonded together diamond crystals and interstitial regions disposed therebetween that are substantially free of a catalyst material used to sinter the diamond body. A replacement material is disposed within the interstitial regions. A population of the interstitial regions may include non-solvent catalyst material and/or an infiltrant aid disposed therein. The diamond body comprises two regions; namely, a first region comprising diamond grains that may be sized smaller than diamond grains in a second region, and/or the first region may comprise a diamond volume that is greater than that in the second region.
摘要:
A method for facilitating infiltration of an infiltrant material into a TSP material during re-bonding of the TSP material to a substrate, by enhancing the porosity of the TSP material near the interface with the substrate is provided. Cutting elements formed by such method and downhole tools including such cutting elements are also provided.
摘要:
The present disclosure relates to cutting elements incorporating polycrystalline diamond bodies used for subterranean drilling applications, and more particularly, to polycrystalline diamond bodies having a high diamond content which are configured to provide improved properties of thermal stability and wear resistance, while maintaining a desired degree of impact resistance, when compared to prior polycrystalline diamond bodies. In various embodiments disclosed herein, a cutting element with high diamond content includes a modified PCD structure and/or a modified interface (between the PCD body and a substrate), to provide superior performance.
摘要:
The present disclosure relates to cutting elements incorporating polycrystalline diamond bodies used for subterranean drilling applications, and more particularly, to polycrystalline diamond bodies having a high diamond content which are configured to provide improved properties of thermal stability and wear resistance, while maintaining a desired degree of impact resistance, when compared to prior polycrystalline diamond bodies. In various embodiments disclosed herein, a cutting element with high diamond content includes a modified PCD structure and/or a modified interface (between the PCD body and a substrate), to provide superior performance.
摘要:
An insert for a drill bit may include a metallic carbide body; an outer layer of polycrystalline diamond material on the outermost end of the insert, the polycrystalline diamond material comprising a plurality of interconnected first diamond grains and a first binder material in interstitial regions between the interconnected first diamond grains; and at least two transition layers between the metallic carbide body and the outer layer, the at least two transition layers comprising: an outermost transition layer comprising a composite of second diamond grains, first metal carbide or carbonitride particles, and a second binder material; and an innermost transition layer comprising a composite of third diamond grains, second metal carbide or carbonitride particles, and a third binder material wherein a thickness of the outer layer is lesser than that of each of the at least two transition layers.
摘要:
An insert for a drill bit may include a metallic carbide body; an outer layer of polycrystalline diamond material on the outermost end of the insert, the polycrystalline diamond material comprising a plurality of interconnected first diamond grains and a first binder material in interstitial regions between the interconnected first diamond grains; and at least one transition layer between the metallic carbide body and the outer layer, the at least one transition layer comprising a composite of second diamond grains, first metal carbide particles, and a second binder material, wherein the second diamond grains have a larger grain size than the first diamond grains.
摘要:
PCD inserts comprise a PCD body having multiple FG-PCD regions with decreasing diamond content moving from a body outer surface to a metallic substrate. The diamond content changes in gradient fashion by changing metal binder content. A region adjacent the outer surface comprises 5 to 20 percent by weight metal binder, and a region remote from the surface comprises 15 to 40 percent by weight metal binder. One or more transition regions are interposed between the PCD body and substrate. The transition region comprises PCD, binder metal, and a carbide, comprises a metal binder content less than that present in the PCD body region positioned next to it.
摘要:
In one aspect, a vacuum-sealed can is used during the bonding process to improve the properties of an infiltrated TSP cutting element. In one embodiment, ultra hard diamond crystals and a catalyst material are sintered to form a polycrystalline diamond material (PCD). This PCD material is leached to remove the catalyst, forming a thermally stable product (TSP). The TSP material and a substrate are placed into an enclosure such as a can assembly, heated, and subjected to a vacuum in order to remove gas, moisture and other residuals that can inhibit infiltration of the infiltrant into the TSP layer. The can assembly is then subjected to high temperature, high pressure bonding to bond the TSP material to the substrate. During bonding, material from the substrate infiltrates the TSP layer.
摘要:
A cutting element that includes a substrate; and an outer layer of polycrystalline diamond material disposed upon the outermost end of the cutting element, wherein the polycrystalline diamond material: a plurality of interconnected diamond particles; and a plurality of interstitial regions disposed among the bonded diamond particles, wherein the plurality of interstitial regions contain a plurality of metal carbide phases and a plurality of metal binder phases together forming a plurality of metallic phases, wherein the plurality of metal carbide phases are formed from a plurality of metal carbide particles; wherein the plurality of interconnected diamond particles form at least about 60 to at most about 80% by weight of the polycrystalline diamond material; and wherein the plurality of metal carbide phases represent at least 50% by weight of the plurality of metallic phases is disclosed.