摘要:
HDPE nanocomposite is made by mixing HDPE with organoclay. Such HDPE nanocomposite contains concentrations of organoclay less than 4 weight percent. Unexpectedly, using less organoclay than that conventionally recommended, results in superior oxygen and water vapor transmission rates for HDPE compounds. The HDPE nanocomposite is useful for packaging films and containers for food or other perishables.
摘要:
A composite of nanoclay and thermoplastic matrix polymer is disclosed, optionally containing a polyolefin elastomer and also optionally containing a dispersion agent for the nanoclay. The nanocomposite is prepared for use with thermoplastic polyolefins (TPO's). The polyolefin elastomer, preferably an ethylene-octene copolymer, is added into a mixing extruder downstream of the other ingredients. The nanoconcentrate contributes increased stiffness and toughness to a TPO, which can be used form molded articles such as automotive parts.
摘要:
A method is disclosed concerning discovering how the use of an additive in a polyolefin compound affects the weatherability of that compound. Applying that technique, a weatherable polyolefin nanocomposite is disclosed, which contains UV stabilizers that filter wavelengths in a range influenced by presence of organoclay in the nanocomposite.
摘要:
HDPE nanocomposite is made by mixing HDPE with organoclay. Such HDPE nanocomposite contains concentrations of organoclay less than 4 weight percent. Unexpectedly, using less organoclay than that conventionally recommended, results in superior oxygen and water vapor transmission rates for HDPE compounds. The HDPE nanocomposite is useful for packaging films and containers for food or other perishables.
摘要:
An intumescent polyolefin nanocomposite is disclosed. The nanoclay contributes stiffness, toughness and flame retardancy to the compound. The intumescent contributes flame retardancy. The compound can be processed as a thermoplastic into any practical article needing stiff, tough, and flame retardancy properties.
摘要:
A thermoplastic elastomer compound is disclosed having polyether-polyamide copolymer, epoxidized soybean oil, and vulcanized vegetable oil. The compound has a biorenewable content of the compound of at least about 70 weight percent. The compound can be used to make a plastic article needing a Shore A hardness of from about 22 to about 72. The compound is a sustainable solution for extruded or molded articles.
摘要:
A method is disclosed concerning discovering how the use of an additive in a polyolefin compound affects the weatherability of that compound. Applying that technique, a weatherable polyolefin nanocomposite is disclosed, which contains UV stabilizers that filter wavelengths in a range influenced by presence of organoclay in the nanocomposite.
摘要:
A nanocomposite concentrate composition comprising about 10 weight percent to about 90 weight percent of a layered silicate material and about 10 weight percent to about 90 weight percent of a matrix polymer comprising about 90-99.8% by weight of a polyolefin and about 0.2% to about 10%, preferably about 0.2% to about 3%, more preferably about 1% to 3% by weight, of a maleic anhydride-modified polyolefin, based on the total weight of polyolefins, wherein the layered silicate material is dispersed uniformly throughout the matrix polymer. Shearing of the concentrate and later (after shear) addition of an added matrix polymer avoids thermal degradation of the added matrix polymer and optimizes the dispersion of the nanomer throughout the matrix polymer; provides increased tensile strength; and reduces degradation of the polymer by melt formation of a concentrate thereby decreasing heat degradation of added matrix polymer.
摘要:
A method for controlling furnace temperature of a fired heating furnace is disclosed, comprising: measuring furnace temperatures to obtain furnace temperature feedback values; calculating the differences between furnace temperature setting values and the furnace temperature feedback values as discrepancy values DV1, in accordance with the furnace temperature feedback values and the furnace temperature setting value; calculating the differences between the furnace temperature setting values and the furnace temperature feedback values in a unit time, i.e., the gradient of furnace temperature change values, as discrepancy values DV2; obtaining a speed V of a fired heater machine set from a speed adjuster of the fired heater machine set, and obtaining a first multiple feed forward output components FFV in accordance with the speed V of the machine set (V); obtaining a second multiple feed forward output components FFT in accordance with the differences between the furnace temperature setting values and the furnace temperature feedback values, i.e., the discrepancy values DV1; looking up a PID control parameter in accordance with the discrepancy values DV1 and DV2, based on fuzzy control rule, and creating an adjusting control parameter OP1 in accordance with the PID control parameter; controlling a valve for regulating coal gas flow and a valve for regulating air flow by combining the adjusting control parameter OP1 with the first multiple feed forward components FFV and the second multiple feed forward components FFT as a final control output value.