Abstract:
A three-dimensional fine movement device includes a moving body, a fixation member to which the moving body is fixed, a three-dimensional fine movement unit, to which the fixation member is fixed, and which allows for three-dimensional fine movement of the moving body with the fixation member interposed therebetween, a base member to which the three-dimensional fine movement unit is fixed, and movement amount detecting means that is fixed to the base member to detect a movement amount of the fixation member.
Abstract:
A three-dimensional fine movement device includes a moving body, a fixation member to which the moving body is fixed, a three-dimensional fine movement unit, to which the fixation member is fixed, and which allows for three-dimensional fine movement of the moving body with the fixation member interposed therebetween, a base member to which the three-dimensional fine movement unit is fixed, and movement amount detecting means that is fixed to the base member to detect a movement amount of the fixation member.
Abstract:
According to this invention, a scanning probe microscope for scanning a surface of a sample with a probe by bringing the probe into contact with the surface of the sample, comprises a cantilever having the probe at its tip; a displacement detection unit to detect both a bending amount and a torsion amount of the cantilever; and a contact determination unit to determine a primary contact of the probe with the surface of the sample, based on the bending amount and the torsion amount detected by the displacement detection unit in all directions from an undeformed condition of the cantilever.
Abstract:
A scanning probe microscope includes a cantilever that has a first attachment surface and a cantilever attachment portion that has a second attachment surface to which the first attachment surface of the cantilever is attached. Columnar elements including nanofibers or nanotubes are formed on the second attachment surface, and the second attachment surface adheres to the first attachment surface by using the columnar element.
Abstract:
A scanning probe microscope has a cantilever having a probe at a tip of the cantilever, a driving unit that performs a separating operation for separating one of the sample and the probe from the other at a speed exceeding a response speed of the cantilever from a state where the probe is in contact with the surface of the sample, a determination unit that determines that the probe is separated from the surface of the sample when vibration of the cantilever at a predetermined amplitude is detected at a resonant frequency of the cantilever during the separating operation, and a driving control unit that stops the separating operation when the determination unit determines that the probe is separated from the surface of the sample and relatively moves the probe and the sample to a position where the probe is located on a next measuring point of the sample.
Abstract:
According to this invention, a scanning probe microscope for scanning a surface of a sample with a probe by bringing the probe into contact with the surface of the sample, comprises a cantilever having the probe at its tip; a displacement detection unit to detect both a bending amount and a torsion amount of the cantilever; and a contact determination unit to determine a primary contact of the probe with the surface of the sample, based on the bending amount and the torsion amount detected by the displacement detection unit in all directions from an undeformed condition of the cantilever.
Abstract:
A device for calculating a position of an actuator, the actuator including a movement mechanism configured to move in one direction in proportion to a control signal generated for each minimum movement amount ΔM and a movement amount detection sensor configured to detect a movement amount of the movement mechanism in a minimum resolution ΔS, where A=ΔS/ΔM≧2, and the device includes a position calculation unit configured to calculating a position SA of the movement mechanism at a target position from the control signal at a time point T1, at which the sensor signal becomes (S0+m×ΔS) or (S0−m×ΔS), where m is a natural number of 1 or more, the control signal at the target position of the movement mechanism is denoted by M0, and the sensor signal is denoted by S0.
Abstract:
A device for calculating a position of an actuator, the actuator including a movement mechanism configured to move in one direction in proportion to a control signal generated for each minimum movement amount ΔM and a movement amount detection sensor configured to detect a movement amount of the movement mechanism in a minimum resolution ΔS, where A=ΔS/ΔM≧2, and the device includes a position calculation unit configured to calculating a position SA of the movement mechanism at a target position from the control signal at a time point T1, at which the sensor signal becomes (S0+m×ΔS) or (S0−m×ΔS), where m is a natural number of 1 or more, the control signal at the target position of the movement mechanism is denoted by M0, and the sensor signal is denoted by S0.
Abstract translation:一种用于计算致动器的位置的装置,所述致动器包括移动机构,所述移动机构配置成与针对每个最小移动量&Dgr; M生成的控制信号成比例地沿一个方向移动;移动量检测传感器,被配置为检测运动量 A =&Dgr; S /&Dgr;M≥2的最小分辨率& S的移动机构,并且该装置包括位置计算单元,其被配置为从控制信号计算目标位置处的移动机构的位置SA 在传感器信号变为(S0 + m×&Dgr; S)或(S0-m×&Dgr; S)的时间点T1,其中m为1或更大的自然数,则目标位置处的控制信号 运动机构由M0表示,传感器信号由S0表示。
Abstract:
A scanning probe microscope has a cantilever having a probe at a tip of the cantilever, a driving unit that performs a separating operation for separating one of the sample and the probe from the other at a speed exceeding a response speed of the cantilever from a state where the probe is in contact with the surface of the sample, a determination unit that determines that the probe is separated from the surface of the sample when vibration of the cantilever at a predetermined amplitude is detected at a resonant frequency of the cantilever during the separating operation, and a driving control unit that stops the separating operation when the determination unit determines that the probe is separated from the surface of the sample and relatively moves the probe and the sample to a position where the probe is located on a next measuring point of the sample.
Abstract:
A scanning probe microscope has a cantilever having: a probe that is to be contacted or approached on a surface of a sample; and a processor that operates to perform a process including: calculating a measurement width MW and an offset value OV from a minimum value Smin and a maximum value Smax of a signal indicating a displacement of the cantilever with the following Equations (1) and (2) when a prescanning operation is performed before the measurement data is acquired by the probe microscope controller; and adjusting at least one of the offset value OV and the measurement width MW based on a temporal variation of the signal at the same position on the surface of the sample when the prescanning operation is performed. MW=(Smax−Smin) Equation (1) OV=(MW/2)+Smin Equation (2)