Abstract:
A processing apparatus and a processing method are provided, which use a charged particle beam device that achieves defection of secondary electrons/reflected electrons at a large angle and cancels out noises of an electromagnetic deflector and an electrostatic deflector to suppress a position shift of a primary electron beam caused by circuit noises of a primary beam/secondary beam separation circuit. In the charged particle beam device that includes an electronic optical system radiating a concentrated electron beam onto a sample placed on a stage to perform scanning and captures an image of the sample, a reference signal and a signal generation unit of a voltage-source control signal applied to the electrostatic deflector generating the electrostatic deflector and a reference signal and a signal generation unit of a current-source control signal applied to the electromagnetic deflector generating a magnetic field are made common in an overlapping-electromagnetic-deflector control unit that controls a path of the secondary electrons/reflected electrons incident on a detector, and frequency characteristics and phase characteristics of the voltage control signal are coincident with those of the current-source control signal.
Abstract:
A processing apparatus and a processing method are provided, which use a charged particle beam device that achieves defection of secondary electrons/reflected electrons at a large angle and cancels out noises of an electromagnetic deflector and an electrostatic deflector to suppress a position shift of a primary electron beam caused by circuit noises of a primary beam/secondary beam separation circuit. In the charged particle beam device that includes an electronic optical system radiating a concentrated electron beam onto a sample placed on a stage to perform scanning and captures an image of the sample, a reference signal and a signal generation unit of a voltage-source control signal applied to the electrostatic deflector generating the electrostatic deflector and a reference signal and a signal generation unit of a current-source control signal applied to the electromagnetic deflector generating a magnetic field are made common in an overlapping-electromagnetic-deflector control unit that controls a path of the secondary electrons/reflected electrons incident on a detector, and frequency characteristics and phase characteristics of the voltage control signal are coincident with those of the current-source control signal.
Abstract:
A charged particle beam device includes a deflection unit that deflects a charged particle beam released from a charged particle source to irradiate a sample, a reflection plate that reflects secondary electrons generated from the sample, and a control unit that controls the deflection unit based on an image generated by detecting the secondary electrons reflected from the reflection plate. The deflection unit includes an electromagnetic deflection unit that electromagnetically scans with the charged particle beam by a magnetic field and an electrostatic deflection unit that electrostatically scans with the charged particle beam by an electric field. The control unit controls the electromagnetic deflection unit and the electrostatic deflection unit, superimposes an electromagnetic deflection vector generated by the electromagnetic scanning and an electrostatic deflection vector generated by the electrostatic scanning, and controls at least a trajectory of the charged particle beam.
Abstract:
A charged particle apparatus includes: a charged particle source unit; a blanking electrode unit that blanks a charged particle beam launched from the charged particle source unit; a deflecting electrode unit that deflects the charged particle beam launched from the charged particle source unit and passing through the blanking electrode unit; an objective lens unit that converges the charged particle beam deflected by the deflecting electrode unit and radiates the charged particle beam to a surface of a sample; a secondary charged particle detection unit that detects a secondary charged particle generated from the sample irradiated with the charged particle beam; a signal processing unit that processes a signal obtained by detecting the secondary charged particle by the secondary charged particle detection unit; and a control unit that controls the entire apparatus. The control unit includes a transient signal correction unit that corrects a transient signal when the blanking of the charged particle beam is turned off by the blanking electrode. Thus, an image with no distortion can be obtained even when the blanking electrode is operated to turn on and off at a high speed and it is possible to perform measurement or inspection of a minute pattern with high precision.
Abstract:
To provide a charged particle beam apparatus capable of obtaining an image with high contrast and high visibility, the apparatus has: a charged particle optical system; a detection part to detect secondary charged particles generated from the sample; an image formation part to receive a detection signal from the detection part and form an image of the sample; an image processing part to process the image formed with the image formation part; and a display part to display the result of processing with the image processing part, wherein the image formation part has a pulse-count signal processing part to generate cumulative histogram information on a pulse signal component in the detection signal, set a threshold value for pulse signal detection using information on the generated cumulative histogram, and output a detection signal having a value higher than the set threshold value as a pulse signal.
Abstract:
A charged-particle beam system comprises: a charged-particle beam device containing a detection unit for detecting electrons generated by irradiating a sample with a charged-particle beam released from a charged particle source; and a signal detection unit in which a detection signal from the detection unit is input through a wiring. The signal detection unit comprises: a separation unit for separating into a rising signal and a falling signal the detection signal from the detection unit; a falling signal processing unit for at least eliminating ringing in the falling signal; and a combination unit generating and delivering a combined signal produced by combining the rising signal, which has been separated by the separation unit, with the falling signal wherefrom the ringing has been eliminated by the falling signal processing unit.
Abstract:
In an image forming method of charged particle beam apparatus for scanning a sample by irradiating the sample with a converged charged particle beam and detecting secondary charged particles generated from the sample by a detection unit, receiving and processing an output signal from the detection unit, and receiving the processed signal and forming an image of the sample, receiving and processing the output signal are performed by analogically processing the output signal and by performing pulse-count processing on the output signal, and pulse-count processing is performed by removing a ringing pulse in the output signal and counting pulses in the signal from which the ringing pulse has been removed.