Charged Particle Beam Device
    1.
    发明申请

    公开(公告)号:US20170271121A1

    公开(公告)日:2017-09-21

    申请号:US15613941

    申请日:2017-06-05

    Abstract: A processing apparatus and a processing method are provided, which use a charged particle beam device that achieves defection of secondary electrons/reflected electrons at a large angle and cancels out noises of an electromagnetic deflector and an electrostatic deflector to suppress a position shift of a primary electron beam caused by circuit noises of a primary beam/secondary beam separation circuit. In the charged particle beam device that includes an electronic optical system radiating a concentrated electron beam onto a sample placed on a stage to perform scanning and captures an image of the sample, a reference signal and a signal generation unit of a voltage-source control signal applied to the electrostatic deflector generating the electrostatic deflector and a reference signal and a signal generation unit of a current-source control signal applied to the electromagnetic deflector generating a magnetic field are made common in an overlapping-electromagnetic-deflector control unit that controls a path of the secondary electrons/reflected electrons incident on a detector, and frequency characteristics and phase characteristics of the voltage control signal are coincident with those of the current-source control signal.

    Charged Particle Beam Device
    2.
    发明申请
    Charged Particle Beam Device 有权
    带电粒子束装置

    公开(公告)号:US20160329186A1

    公开(公告)日:2016-11-10

    申请号:US15109230

    申请日:2014-12-16

    Abstract: A processing apparatus and a processing method are provided, which use a charged particle beam device that achieves defection of secondary electrons/reflected electrons at a large angle and cancels out noises of an electromagnetic deflector and an electrostatic deflector to suppress a position shift of a primary electron beam caused by circuit noises of a primary beam/secondary beam separation circuit. In the charged particle beam device that includes an electronic optical system radiating a concentrated electron beam onto a sample placed on a stage to perform scanning and captures an image of the sample, a reference signal and a signal generation unit of a voltage-source control signal applied to the electrostatic deflector generating the electrostatic deflector and a reference signal and a signal generation unit of a current-source control signal applied to the electromagnetic deflector generating a magnetic field are made common in an overlapping-electromagnetic-deflector control unit that controls a path of the secondary electrons/reflected electrons incident on a detector, and frequency characteristics and phase characteristics of the voltage control signal are coincident with those of the current-source control signal.

    Abstract translation: 提供一种处理装置和处理方法,其使用以大角度实现二次电子/反射电子的偏离的带电粒子束装置,并且消除电磁偏转器和静电偏转器的噪声,以抑制初级 电子束由主光束/次光束分离电路的电路噪声引起。 在带电粒子束装置中,包括电子光学系统,该电子光学系统将集中的电子束辐射到放置在载物台上的样品上以进行扫描并捕获样品的图像,参考信号和电压源控制信号的信号产生单元 施加到产生静电偏转器的静电偏转器,并且施加到产生磁场的电磁偏转器的电流源控制信号的参考信号和信号产生单元在控制路径的重叠电磁偏转器控制单元中是共同的 的入射到检测器上的二次电子/反射电子,并且电压控制信号的频率特性和相位特性与电流源控制信号的频率特性和相位特性一致。

    CHARGED PARTICLE BEAM DEVICE
    3.
    发明申请

    公开(公告)号:US20180106610A1

    公开(公告)日:2018-04-19

    申请号:US15562810

    申请日:2016-04-06

    Abstract: A charged particle apparatus includes: a charged particle source unit; a blanking electrode unit that blanks a charged particle beam launched from the charged particle source unit; a deflecting electrode unit that deflects the charged particle beam launched from the charged particle source unit and passing through the blanking electrode unit; an objective lens unit that converges the charged particle beam deflected by the deflecting electrode unit and radiates the charged particle beam to a surface of a sample; a secondary charged particle detection unit that detects a secondary charged particle generated from the sample irradiated with the charged particle beam; a signal processing unit that processes a signal obtained by detecting the secondary charged particle by the secondary charged particle detection unit; and a control unit that controls the entire apparatus. The control unit includes a transient signal correction unit that corrects a transient signal when the blanking of the charged particle beam is turned off by the blanking electrode. Thus, an image with no distortion can be obtained even when the blanking electrode is operated to turn on and off at a high speed and it is possible to perform measurement or inspection of a minute pattern with high precision.

    CHARGED PARTICLE BEAM DEVICE
    4.
    发明申请

    公开(公告)号:US20200221566A1

    公开(公告)日:2020-07-09

    申请号:US16631256

    申请日:2017-07-18

    Abstract: The present invention prevents breakage of a chip by using a simple configuration even when an extraction-electrode power source cannot apply voltage to an extraction electrode due to a malfunction, etc. This charged particle beam device is provided with: a charged particle source; an extraction electrode that extracts charged particles from the charged particle source; an extraction-electrode power source that applies voltage to the extraction electrode; an accelerating electrode for accelerating the charged particles; an accelerating power source that applies voltage to the accelerating electrode; and a diode and a resistor which are connected in series between a middle stage of the accelerating power source and the output side of the extraction-electrode power source.

    CHARGED PARTICLE BEAM SYSTEM
    5.
    发明申请

    公开(公告)号:US20200090900A1

    公开(公告)日:2020-03-19

    申请号:US16572943

    申请日:2019-09-17

    Abstract: A charged particle beam system includes a charged particle beam device 101 and the detection circuit 114. The charged particle beam device 101 includes a first antenna 102 having a first resonant frequency and a second antenna 103 having a second resonant frequency. The detection circuit 114 includes a first amplitude detection unit 110 which detects a first amplitude of a signal after passing a first filter 107, a second amplitude detection unit 111 which detects a second amplitude of a signal after passing a second filter 108, and an amplitude comparison unit 113 which compares the first amplitude with the second amplitude.

Patent Agency Ranking