Abstract:
An apparatus includes at least one transceiver configured to transmit or receive at least one data signal over a shared physical medium. The physical medium includes a bus configured to be coupled to multiple devices including the apparatus and provides a multi-drop capability. The at least one transceiver is configured to transmit or receive the at least one data signal at a rate of more than 10 Mbps. In some embodiments, the apparatus includes a MAC driver configured to route network layer data over the physical medium. In other embodiments, the apparatus includes a MAC driver configured to control transmissions and receptions of network layer data over the physical medium by the at least one transceiver and a logic device configured to control physical layer signaling, interface with the MAC driver, enable the transmissions and receptions of the network layer data on the physical medium, and implement collision detection and avoidance.
Abstract:
A system includes a module having at least one input/output (I/O) channel. The system also includes a terminal block having terminals configured to provide electrical connections for the at least one I/O channel. The system further includes a barrier assembly having one or more intrinsic safety (IS) barriers. Each IS barrier is configured to receive at least one data or power signal, limit an amount of energy in the at least one data or power signal, and output the at least one energy-limited data or power signal. Each IS barrier includes at least one limiter circuit configured to limit the amount of energy in the at least one data or power signal. Each IS barrier is configured to be mounted on the terminal block. Each IS barrier could be configured to provide galvanic isolation between multiple devices or systems coupled to the IS barrier. Each limiter circuit could include a current limiter.
Abstract:
A system includes a module having at least one input/output (I/O) channel. The system also includes a terminal block having terminals configured to provide electrical connections for the at least one I/O channel. The system further includes a barrier assembly having one or more intrinsic safety (IS) barriers. Each IS barrier is configured to receive at least one data or power signal, limit an amount of energy in the at least one data or power signal, and output the at least one energy-limited data or power signal. Each IS barrier includes at least one limiter circuit configured to limit the amount of energy in the at least one data or power signal. Each IS barrier is configured to be mounted on the terminal block. Each IS barrier could be configured to provide galvanic isolation between multiple devices or systems coupled to the IS barrier. Each limiter circuit could include a current limiter.
Abstract:
An apparatus includes at least one transceiver configured to transmit or receive at least one data signal over a shared physical medium. The physical medium includes a bus configured to be coupled to multiple devices including the apparatus and provides a multi-drop capability. The at least one transceiver is configured to transmit or receive the at least one data signal at a rate of more than 10 Mbps. In some embodiments, the apparatus includes a MAC driver configured to route network layer data over the physical medium. In other embodiments, the apparatus includes a MAC driver configured to control transmissions and receptions of network layer data over the physical medium by the at least one transceiver and a logic device configured to control physical layer signaling, interface with the MAC driver, enable the transmissions and receptions of the network layer data on the physical medium, and implement collision detection and avoidance.
Abstract:
An apparatus includes one or more channels. Each channel includes circuitry configured to receive an input current from a universal input/output (UIO) and provide an output to a field device in a hazardous or potentially hazardous zone, the circuitry further configured to limit energy to the field device by limiting at least one of a voltage, a current, or a power of the output. Each channel also includes terminals configured to connect the circuitry to one or more cables coupling the field device to the apparatus. Each channel is configured to provide an intrinsically safe barrier between the field device and a controller that controls operation of the field device.
Abstract:
An apparatus includes first and second hardware components. The first component includes at least one first input configured to receive at least one first data or power signal, at least one voltage clamping circuit configured to limit a voltage of the at least one first data or power signal, and at least one first output configured to provide the at least one voltage-limited first data or power signal. The second component includes at least one second input configured to receive at least one second data or power signal, at least one limiter circuit configured to limit an amount of energy in the at least one second data or power signal, and at least one second output configured to provide the at least one energy-limited second data or power signal. The at least one second data or power signal comprises or is based on the at least one voltage-limited first data or power signal.
Abstract:
A device includes multiple communication interfaces configured to send and receive data over multiple communication paths. The device also includes multiple input/output (I/O) channels configured to communicate with multiple field devices. The device further includes at least one processing device configured to process at least some of the data and control at least one of the field devices based on the processed data. The device may also include an intrinsic safety barrier electrically separating the communication interfaces and the I/O channels. The communication interfaces may include at least one first interface configured to communicate over one or more first communication paths with at least one component of an industrial control system and at least one second interface configured to communicate over one or more second communication paths with at least one other device that is configured to communicate with additional field devices.
Abstract:
An intrinsic barrier device, method and computer program product for isolating a communication channel of an input/output (IO) module from a field device. The intrinsic barrier device includes a front end having a programming input adapted to receive an analog input (AI), analog output (AO), digital input (DI) or digital output (DO) IO type configuration signal. The intrinsic barrier device also includes a processor to process the IO type configuration signal and an associated memory device storing an intrinsic barrier IO type configuration (IBTC) program. The processor is programmed to implement the IBTC program. The processor, responsive to the IO type configuration signal configures the intrinsic barrier device to operate as the AI, AO, DI or DO for supporting communications through the intrinsic barrier device over the communication channel between the IO module and the field device in the AI, AO, DI or DO.
Abstract:
A method and apparatus is disclosed that includes first and second hardware components. The first component includes at least one first input configured to receive at least one first data or power signal, at least one voltage clamping circuit configured to limit a voltage of the at least one first data or power signal, and at least one first output configured to provide the at least one voltage-limited first data or power signal. The second component includes at least one second input configured to receive at least one second data or power signal, at least one limiter circuit configured to limit an amount of energy in the at least one second data or power signal, and at least one second output configured to provide the at least one energy-limited second data or power signal.
Abstract:
A method for sensing modulated signals in a process facility. The method includes providing a monitoring device that includes a non-contact electromagnetic sensor (EM sensor) configured to sense a modulated signal transmitted on a cable including a conductor coupled to a sensing device or apparatus in the process facility. The monitoring device further includes a non-transitory machine readable storage device and a processor. The non-transitory machine readable storage device stores a data decoding program including protocol information for identifying different communication protocols. The monitoring device is positioned in proximity to the cable for the EM sensor to detect the modulated signal. The data decoding program is implemented by the processor causing the processor to detect the modulated signal and condition the modulated signal to provide a conditioned modulated signal. The conditioned modulated signal is decoded to generate decoded signal data, and the decoded signal data is displayed.