Abstract:
The embodiments described herein can provide improved reliability and accuracy of communication to and from and aircraft, such as aircraft-to-aircraft communication and aircraft-to-air traffic control (ATC) communication. In particular, the systems and methods can improve the reliability and accuracy of aircraft communication by performing voice-to-text conversions on voice communications and performing a validation check on the resulting voice-to-text converted message. This validation check determines a measure of validation for the voice-to-text converted message. In one embodiment, the voice-to-text converted message can be displayed to a user with a visual indicator of the measure of validation. Thus, the user can be made aware of the measure of validation when viewing the voice-to-text converted message. Such a system and method can be used to provide the user with increased information regarding the reliability and accuracy of the voice-to-text converted message, and thus can provide improved communication to and from the aircraft.
Abstract:
An electronic signoff system for vehicle departure readiness is provided which may include, but is not limited to, a wireless e-signoff management system, the wireless e-signoff management system configured to generate a workflow for a turnaround of the vehicle, transmit one or more tasks to each of a plurality of personal electronic devices, receive an indication that one of the tasks has been completed when the personal electronic device reads a task completion component associated with the task, update a dashboard corresponding to the workflow after each task is completed, transmit a notification to any subscribing electronic device, the notification including the data from the dashboard, receive, from an electronic device associated with the turnaround coordinator, final signoff notification when the vehicle is ready to depart, and transmit the final signoff notification to the at least one of the subscribing electronic devices.
Abstract:
A system and method of waking a person includes receiving, in a processing system, stimuli configuration data that is indicative of all available waking stimuli available for use. Sleep state data that is indicative of a current sleep state of the person is received in the processing system. The stimuli configuration data and the sleep state data are processed, in the processing system, to determine (i) a set of the available stimuli to use to awaken the person and (ii) a sequence of activation of the set available stimuli to use. The set of available stimuli are selectively activated, via the processing system, in the determined sequence of activation.
Abstract:
A method of non-intrusively measuring a memory profile of a thread under test comprises executing a detection thread in parallel with the thread under test, the thread under test executed on a first core of a multi-core processor and the detection thread executed on a second core of the multi-core processor; generating a pattern of cache miss memory reads on the detection thread in order to access a memory shared by the first core and the second core; periodically obtaining read times in the detection thread indicating the amount of time taken to complete the cache miss memory reads generated on the detection thread; and determining the memory profile of the thread under test based on the obtained read times of the detection thread.
Abstract:
Systems and methods directed to evaluating potential loss of separation are provided. The method continuously receives a host status data, as well as traffic flight information for neighbor traffic. Responsive to a controller pilot data link communication (CPDLC) message with a flight profile change, the method continues by processing the host aircraft status data and the traffic flight information, to (i) construct a modified host flight path based on incorporating the host profile change without delay, and (ii) construct a neighbor aircraft trajectory for a neighbor aircraft. The method processes the modified host flight path and the neighbor aircraft trajectory with loss of separation (LOS) rules, to identify a potential loss of separation (LOS) event. Responsive to identifying the potential LOS event, the method continues by annunciating information describing the potential LOS and its location.
Abstract:
Systems and methods directed to evaluating potential loss of separation are provided. The method continuously receives a host status data, as well as traffic flight information for neighbor traffic. Responsive to a controller pilot data link communication (CPDLC) message with a flight profile change, the method continues by processing the host aircraft status data and the traffic flight information, to (i) construct a modified host flight path based on incorporating the host profile change without delay, and (ii) construct a neighbor aircraft trajectory for a neighbor aircraft. The method processes the modified host flight path and the neighbor aircraft trajectory with loss of separation (LOS) rules, to identify a potential loss of separation (LOS) event. Responsive to identifying the potential LOS event, the method continues by annunciating information describing the potential LOS and its location.
Abstract:
An electronic signoff system for vehicle departure readiness is provided which may include, but is not limited to, a wireless e-signoff management system, the wireless e-signoff management system configured to generate a workflow for a turnaround of the vehicle, transmit one or more tasks to each of a plurality of personal electronic devices, receive an indication that one of the tasks has been completed when the personal electronic device reads a task completion component associated with the task, update a dashboard corresponding to the workflow after each task is completed, transmit a notification to any subscribing electronic device, the notification including the data from the dashboard, receive, from an electronic device associated with the turnaround coordinator, final signoff notification when the vehicle is ready to depart, and transmit the final signoff notification to the at least one of the subscribing electronic devices.