Abstract:
A system and method for controlling a proximity display system by providing the ability to rapidly blank and un-blank the display is provided. The system and method enable modifying, blanking and un-blanking in response to the detected location of the viewer's eye. The system and method optionally provide the viewer with cueing information that directs the viewer's eye toward the eyebox in response to detecting that the viewer's eye is out of the eyebox.
Abstract:
A space suit helmet capable of meeting the demands of future space suit helmet display requirements in a decoupled-helmet, helmet-mounted design with sufficient eye relief is provided. A display system and a redirecting assembly are coupled together and mounted to the helmet. The display system generates an image and the redirecting assembly orients the image with respect to a predetermined valid eye location volume within the helmet.
Abstract:
Provided is a compact display system and method for creating, with minimal volume, a focused, high quality, full color, large FOV virtual image characterized by eye-limited spatial resolution. The provided compact display (i) enables a flexible range of eye relief, and (ii) enables a large exit pupil.
Abstract:
A compact proximity display system and method that employs an image transfer device is provided. The system and method employs an image transfer device, such as a fiber optic device, which enables remotely locating an image generating source from the display assembly that is mounted on, or proximate to, the helmet bubble, thereby reducing the amount of components located proximate to the helmet bubble. The system and method minimize the intrusion of the entire display system into user's viewing area, and increase safety.
Abstract:
A compact proximity display system and method that employs an image transfer device is provided. The system and method employs an image transfer device, such as a fiber optic device, which enables remotely locating an image generating source from the display assembly that is mounted on, or proximate to, the helmet bubble, thereby reducing the amount of components located proximate to the helmet bubble. The system and method minimize the intrusion of the entire display system into user's viewing area, and increase safety.
Abstract:
A system and method capable of distinguishing sources in a multiple source environment is provided. The system receives an audio signal comprising an audio tag, a desired audio signal and an undesired audio signal. Based on the audio tag, the system eliminates the undesired audio signal and identifies an intended command in the desired audio signal. The system generates a command for an external device based on the intended command.
Abstract:
Provided is a compact display system and method for creating, with minimal volume, a focused, high quality, full color, large FOV virtual image characterized by eye-limited spatial resolution. The provided compact display (i) enables a flexible range of eye relief, and (ii) enables a large exit pupil.
Abstract:
A space suit helmet capable of meeting the demands of future space suit helmet display requirements in a decoupled-helmet, helmet-mounted design with sufficient eye relief is provided. A display system and a redirecting assembly are coupled together and mounted to the helmet. The display system generates an image and the redirecting assembly orients the image with respect to a predetermined valid eye location volume within the helmet.