Abstract:
A compact proximity display system and method that employs an image transfer device is provided. The system and method employs an image transfer device, such as a fiber optic device, which enables remotely locating an image generating source from the display assembly that is mounted on, or proximate to, the helmet bubble, thereby reducing the amount of components located proximate to the helmet bubble. The system and method minimize the intrusion of the entire display system into user's viewing area, and increase safety.
Abstract:
A method of deploying a modular space station comprises placing an initial space station module in space in a first deployment, the initial space station module including a first control law and momentum component that provides an initial solution for guidance, navigation, and control (GNC) during the first deployment. A first space station modular segment is joined with the initial space station module in a second deployment to produce a first joint configuration of the space station. A second control law and momentum component provides a second solution for GNC of the first joint configuration during the second deployment. A second space station modular segment is joined to the first joint configuration in a third deployment to produce a second joint configuration of the space station. A third control law and momentum component provides a third solution for GNC of the second joint configuration during the third deployment.
Abstract:
A compact proximity display system and method that employs an image transfer device is provided. The system and method employs an image transfer device, such as a fiber optic device, which enables remotely locating an image generating source from the display assembly that is mounted on, or proximate to, the helmet bubble, thereby reducing the amount of components located proximate to the helmet bubble. The system and method minimize the intrusion of the entire display system into user's viewing area, and increase safety.
Abstract:
A vehicle is provided. The vehicle may include, but is not limited to, a virtual backplane, a vehicle management computer communicatively coupled to the first virtual backplane and having a first predetermined schedule, a consolidated propulsion controller communicatively coupled to the virtual backplane and having a second predetermined schedule different from the first predetermined schedule, at least one engine communicatively coupled to the first virtual backplane, each of the at least one engines having a unique schedule, and at least one control system communicatively coupled to the first virtual backplane, each of the at least one control systems having a unique schedule, wherein each of the vehicle management computer, consolidated propulsion controller, at least one engines and at least one control system are configured to add and consume date from the virtual backplane according to their respective schedules.
Abstract:
Systems and methods are described for synchronizing data in a mobile platform. In one embodiment, a method for synchronizing data in a mobile platform is provided. The method includes: receiving a first synchronization signal at a first remote interface unit from a signal generator; receiving a second synchronization signal at a second remote interface unit from the signal generator; and executing a synchronization state machine of the first and second remote interface units based on the first and second synchronization signals to synchronize outputs of the first and second remote interface units.
Abstract:
Systems and methods are described for synchronizing data in a mobile platform. In one embodiment, a method for synchronizing data in a mobile platform is provided. The method includes: receiving a first synchronization signal at a first remote interface unit from a signal generator; receiving a second synchronization signal at a second remote interface unit from the signal generator; and executing a synchronization state machine of the first and second remote interface units based on the first and second synchronization signals to synchronize outputs of the first and second remote interface units.
Abstract:
Systems and methods for a momentum platform are provided. For example, a system for opposing torques includes a platform, wherein the platform is transportable to different locations in a zero-gravity environment and a plurality of momentum devices within the platform, wherein the plurality of momentum devices provide controllable angular momentum. The system also includes a torque feedback device, wherein the torque feedback device detects the torques experienced by the platform; a processing unit that controls the angular momentum of the plurality of momentum devices based on the torques detected by the torque feedback device such that the platform remains stable in response to the torques; and a mounting surface on the platform for attaching objects to the platform.
Abstract:
A method of deploying a modular space station comprises placing an initial space station module in space in a first deployment, the initial space station module including a first control law and momentum component that provides an initial solution for guidance, navigation, and control (GNC) during the first deployment. A first space station modular segment is joined with the initial space station module in a second deployment to produce a first joint configuration of the space station. A second control law and momentum component provides a second solution for GNC of the first joint configuration during the second deployment. A second space station modular segment is joined to the first joint configuration in a third deployment to produce a second joint configuration of the space station. A third control law and momentum component provides a third solution for GNC of the second joint configuration during the third deployment.
Abstract:
A vehicle is provided. The vehicle may include, but is not limited to, a virtual backplane, a vehicle management computer communicatively coupled to the first virtual backplane and having a first predetermined schedule, a consolidated propulsion controller communicatively coupled to the virtual backplane and having a second predetermined schedule different from the first predetermined schedule, at least one engine communicatively coupled to the first virtual backplane, each of the at least one engines having a unique schedule, and at least one control system communicatively coupled to the first virtual backplane, each of the at least one control systems having a unique schedule, wherein each of the vehicle management computer, consolidated propulsion controller, at least one engines and at least one control system are configured to add and consume date from the virtual backplane according to their respective schedules.