Abstract:
A system includes at least one active energy transfer coil and a first passive energy transfer coil. The active energy transfer coil is configured to couple with a power supply. The at least one active energy transfer coil has an active coupling range. The first passive energy transfer coil is magnetically coupled to the active energy transfer coil and is located within the active coupling range. The first passive energy transfer coil has a passive coupling range. The first passive energy transfer coil is configured to provide energy to a first device located within the passive coupling range and based on energy received from the at least one active energy transfer coil.
Abstract:
Motion detection devices and systems are described herein. One motion detection device includes an inertial measurement unit (IMU) configured to measure velocity, orientation, and gravitational forces of the motion detection device and a computing component. The computing component can be configured to determine spectrum parameters of a mobile vehicle associated with the motion detection device using measurements from the IMU, determine IMU orientation parameters using measurements from the IMU, and estimate motion of the mobile vehicle using the spectrum parameters, the IMU orientation parameters, measurements from the IMU, and a motion estimation function.
Abstract:
Motion detection devices and systems are described herein. One motion detection device includes an inertial measurement unit (IMU) configured to measure velocity, orientation, and gravitational forces of the motion detection device and a computing component. The computing component can be configured to determine spectrum parameters of a mobile vehicle associated with the motion detection device using measurements from the IMU, determine IMU orientation parameters using measurements from the IMU, and estimate motion of the mobile vehicle using the spectrum parameters, the IMU orientation parameters, measurements from the IMU, and a motion estimation function.
Abstract:
A system includes at least one active energy transfer coil and a first passive energy transfer coil. The active energy transfer coil is configured to couple with a power supply. The at least one active energy transfer coil has an active coupling range. The first passive energy transfer coil is magnetically coupled to the active energy transfer coil and is located within the active coupling range. The first passive energy transfer coil has a passive coupling range. The first passive energy transfer coil is configured to provide energy to a first device located within the passive coupling range and based on energy received from the at least one active energy transfer coil.
Abstract:
Radar vehicle tracking is described. One or more embodiments include a device to receive a first determined distance between a first radar transceiver and a vehicle, the first distance determined by the first radar transceiver operating in a first mode, receive a second determined distance between a second radar transceiver and the vehicle, the second distance determined by the second radar transceiver operating in the first mode, receive a first determined distance ellipse between the first radar transceiver and the vehicle, the first distance ellipse determined by the first radar transceiver operating in a second mode, receive a second determined distance ellipse between the second radar transceiver and the vehicle, the second distance ellipse determined by the second radar transceiver operating in the second mode, and determine at least one location estimate of the vehicle based on the first and second determined distances and first and second determined distance ellipses.
Abstract:
Radar vehicle tracking is described. One or more embodiments include a device to receive a first determined distance between a first radar transceiver and a vehicle, the first distance determined by the first radar transceiver operating in a first mode, receive a second determined distance between a second radar transceiver and the vehicle, the second distance determined by the second radar transceiver operating in the first mode, receive a first determined distance ellipse between the first radar transceiver and the vehicle, the first distance ellipse determined by the first radar transceiver operating in a second mode, receive a second determined distance ellipse between the second radar transceiver and the vehicle, the second distance ellipse determined by the second radar transceiver operating in the second mode, and determine at least one location estimate of the vehicle based on the first and second determined distances and first and second determined distance ellipses.
Abstract:
A system includes at least one active energy transfer coil and a first passive energy transfer coil. The active energy transfer coil is configured to couple with a power supply. The at least one active energy transfer coil has an active coupling range. The first passive energy transfer coil is magnetically coupled to the active energy transfer coil and is located within the active coupling range. The first passive energy transfer coil has a passive coupling range. The first passive energy transfer coil is configured to provide energy to a first device located within the passive coupling range and based on energy received from the at least one active energy transfer coil.
Abstract:
Methods, systems, and devices are described herein. One method can include determining a cross validation model using a user input, estimating a movement of a device from a first location to a second location using the cross validation model and the user input, and determining the second location of the device using the estimated movement of the device.
Abstract:
Methods, systems, and devices are described herein. One method can include determining a cross validation model using a user input, estimating a movement of a device from a first location to a second location using the cross validation model and the user input, and determining the second location of the device using the estimated movement of the device.
Abstract:
Motion detection devices and systems are described herein. One motion detection device includes an inertial measurement unit (IMU) configured to measure velocity, orientation, and gravitational forces of the motion detection device and a computing component. The computing component can be configured to determine spectrum parameters of a mobile vehicle associated with the motion detection device using measurements from the IMU, determine IMU orientation parameters using measurements from the IMU, and estimate motion of the mobile vehicle using the spectrum parameters, the IMU orientation parameters, measurements from the IMU, and a motion estimation function.