Abstract:
A heat exchanger includes a separator member that divides a first flow passage from a second flow passage. The heat exchanger also includes a plurality of first hollow members that extend across the first flow passage at respective non-orthogonal angles. The plurality of first hollow members are fluidly connected to the second flow passage. Moreover, the heat exchanger includes a plurality of second hollow members that extend across the second flow passage at respective non-orthogonal angles. The plurality of second hollow members are fluidly connected to the first flow passage.
Abstract:
A heat exchanger includes a separator member that divides a first flow passage from a second flow passage. The heat exchanger also includes a plurality of first hollow members that extend across the first flow passage at respective non-orthogonal angles. The plurality of first hollow members are fluidly connected to the second flow passage. Moreover, the heat exchanger includes a plurality of second hollow members that extend across the second flow passage at respective non-orthogonal angles. The plurality of second hollow members are fluidly connected to the first flow passage.
Abstract:
A heat exchanger includes a plurality of interconnected separator members that respectively include a first surface and an opposite second surface. The separator members respectively include an array of wave features. Also, the separator members are stacked and disposed in an alternating arrangement with the first surfaces of adjacent separator members facing each other and attached at the respective wave features, and with the second surfaces of adjacent separator members facing each other and attached at the respective wave features. The heat exchanger also includes a plurality of first flow passages for first fluid flow and second flow passages for second fluid flow. The second fluid and the first fluid are configured to exchange heat through the separator members.
Abstract:
In some examples, a heat exchanger includes a first flow channel having a first flow channel inlet and a first flow channel outlet. The heat exchanger also includes a second flow channel having a second flow channel inlet and a second flow channel outlet. A fin may separate the first flow channel from the second flow channel. The fin may define at least one aperture configured to allow fluid to flow between the first flow channel and the second flow channel if one of the first flow channel inlet or second flow channel inlet becomes constricted through a buildup of foreign object debris.
Abstract:
A heat exchanger includes a plurality of interconnected separator members that respectively include a first surface and an opposite second surface. The separator members respectively include an array of wave features. Also, the separator members are stacked and disposed in an alternating arrangement with the first surfaces of adjacent separator members facing each other and attached at the respective wave features, and with the second surfaces of adjacent separator members facing each other and attached at the respective wave features. The heat exchanger also includes a plurality of first flow passages for first fluid flow and second flow passages for second fluid flow. The second fluid and the first fluid are configured to exchange heat through the separator members.
Abstract:
A heat exchanger includes a separator member that divides a first flow passage from a second flow passage. The heat exchanger also includes a plurality of first hollow members that extend across the first flow passage at respective non-orthogonal angles. The plurality of first hollow members are fluidly connected to the second flow passage. Moreover, the heat exchanger includes a plurality of second hollow members that extend across the second flow passage at respective non-orthogonal angles. The plurality of second hollow members are fluidly connected to the first flow passage.
Abstract:
A heat exchanger includes a plurality of interconnected separator members that respectively include a first surface and an opposite second surface. The separator members respectively include an array of wave features. Also, the separator members are stacked and disposed in an alternating arrangement with the first surfaces of adjacent separator members facing each other and attached at the respective wave features, and with the second surfaces of adjacent separator members facing each other and attached at the respective wave features. The heat exchanger also includes a plurality of first flow passages for first fluid flow and second flow passages for second fluid flow. The second fluid and the first fluid are configured to exchange heat through the separator members.
Abstract:
A heat exchanger includes a plurality of interconnected separator members that respectively include a first surface and an opposite second surface. The separator members respectively include an array of wave features. Also, the separator members are stacked and disposed in an alternating arrangement with the first surfaces of adjacent separator members facing each other and attached at the respective wave features, and with the second surfaces of adjacent separator members facing each other and attached at the respective wave features. The heat exchanger also includes a plurality of first flow passages for first fluid flow and second flow passages for second fluid flow. The second fluid and the first fluid are configured to exchange heat through the separator members.
Abstract:
A heat exchanger includes a separator member that divides a first flow passage from a second flow passage. The heat exchanger also includes a plurality of first hollow members that extend across the first flow passage at respective non-orthogonal angles. The plurality of first hollow members are fluidly connected to the second flow passage. Moreover, the heat exchanger includes a plurality of second hollow members that extend across the second flow passage at respective non-orthogonal angles. The plurality of second hollow members are fluidly connected to the first flow passage.
Abstract:
A heat exchanger includes a hot passage; a cold passage adjacent the hot passage; a pair of tube sheets, with one tube sheet on each opposing side of one of the hot passage and the cold passage; a fin in one of the hot passage and the cold passage; wherein the fin includes a first distal portion, a second distal portion, and an intermediate portion between the first and second distal portions; wherein the fin is configured to provide, at only the first distal portion and the second distal portion, improved flexibility in three degrees of freedom of movement within one of the hot passage and the cold passage.