Abstract:
A heat exchanger may include at least one fluid passageway adjacent a heat transfer plate and a plurality of heat transfer elements positioned in the at least one fluid passageway and joined with the heat transfer plate. The heat transfer elements may be positioned with first spacings therebetween at an inlet end of the at least one fluid passageway. The heat transfer elements may be positioned with second spacings therebetween at an outlet end of the at least one fluid passageway. The first spacings may be smaller than the second spacings.
Abstract:
A heat exchanger includes a separator member that divides a first flow passage from a second flow passage. The heat exchanger also includes a plurality of first hollow members that extend across the first flow passage at respective non-orthogonal angles. The plurality of first hollow members are fluidly connected to the second flow passage. Moreover, the heat exchanger includes a plurality of second hollow members that extend across the second flow passage at respective non-orthogonal angles. The plurality of second hollow members are fluidly connected to the first flow passage.
Abstract:
A heat exchanger includes a separator member that divides a first flow passage from a second flow passage. The heat exchanger also includes a plurality of first hollow members that extend across the first flow passage at respective non-orthogonal angles. The plurality of first hollow members are fluidly connected to the second flow passage. Moreover, the heat exchanger includes a plurality of second hollow members that extend across the second flow passage at respective non-orthogonal angles. The plurality of second hollow members are fluidly connected to the first flow passage.
Abstract:
A heat exchanger includes a separator member that divides a first flow passage from a second flow passage. The heat exchanger also includes a plurality of first hollow members that extend across the first flow passage at respective non-orthogonal angles. The plurality of first hollow members are fluidly connected to the second flow passage. Moreover, the heat exchanger includes a plurality of second hollow members that extend across the second flow passage at respective non-orthogonal angles. The plurality of second hollow members are fluidly connected to the first flow passage.
Abstract:
A heat exchanger may include at least one fluid passageway adjacent a heat transfer plate and a plurality of heat transfer elements positioned in the at least one fluid passageway and joined with the heat transfer plate. The heat transfer elements may be positioned with first spacings therebetween at an inlet end of the at least one fluid passageway. The heat transfer elements may be positioned with second spacings therebetween at an outlet end of the at least one fluid passageway. The first spacings may be smaller than the second spacings.
Abstract:
A heat exchanger includes a separator member that divides a first flow passage from a second flow passage. The heat exchanger also includes a plurality of first hollow members that extend across the first flow passage at respective non-orthogonal angles. The plurality of first hollow members are fluidly connected to the second flow passage. Moreover, the heat exchanger includes a plurality of second hollow members that extend across the second flow passage at respective non-orthogonal angles. The plurality of second hollow members are fluidly connected to the first flow passage.
Abstract:
A heat exchanger may include at least one fluid passageway adjacent a heat transfer plate and a plurality of heat transfer elements positioned in the at least one fluid passageway and joined with the heat transfer plate. The heat transfer elements may be positioned with first spacings therebetween at an inlet end of the at least one fluid passageway. The heat transfer elements may be positioned with second spacings therebetween at an outlet end of the at least one fluid passageway. The first spacings may be smaller than the second spacings.