Abstract:
A panoramic image system with parallax mitigation includes image sensors, a head tracker, a display, and a processor. Each image sensor is fixedly mounted a predetermined linear distance from a first reference axis and is disposed adjacent to at least one other image sensor and to point in a direction that is offset from its adjacent image sensor by a predetermined angle. The head tracker is configured to sense at least the angular position and movement direction of a viewer's head about a second reference axis and to supply an azimuth position signal representative thereof. The display is configured to selectively display images sensed by each of the image sensors. The processor is in operable communication with the image sensors, head tracker, and display. The processor is configured, based at least on the azimuth position signal, to command the display to display images sensed by only one image sensor.
Abstract:
A method for displaying images on a head-mounted display (HMD) device that compensates for a user's vestibulo-ocular reflex (VOR) response. The displayed HMD image is compensated for predicted eye position such that the displayed image stays centered on the fovea of the eye, during transient eye movement caused by head motion, resulting in better display readability, discernment and cognitive processing.
Abstract:
A method for displaying images on a head-mounted display (HMD) device that compensates for a user's vestibulo-ocular reflex (VOR) response. The displayed HMD image is compensated for predicted eye position such that the displayed image stays centered on the fovea of the eye, during transient eye movement caused by head motion, resulting in better display readability, discernment and cognitive processing.
Abstract:
A panoramic image system with parallax mitigation includes image sensors, a head tracker, a display, and a processor. Each image sensor is fixedly mounted a predetermined linear distance from a first reference axis and is disposed adjacent to at least one other image sensor and to point in a direction that is offset from its adjacent image sensor by a predetermined angle. The head tracker is configured to sense at least the angular position and movement direction of a viewer's head about a second reference axis and to supply an azimuth position signal representative thereof. The display is configured to selectively display images sensed by each of the image sensors. The processor is in operable communication with the image sensors, head tracker, and display. The processor is configured, based at least on the azimuth position signal, to command the display to display images sensed by only one image sensor.
Abstract:
An augmented reality system is provided and a method for controlling an augmented reality system are provided. The augmented reality system, for example, may include, but is not limited to a display, a memory, and at least one processor communicatively coupled to the display and memory, the at least one processor configured to generate image data having a first resolution at a first rate, store the generated image data in the memory, and transfer a portion of the generated image data having a second resolution to the display from the memory at a second rate, wherein the second rate is faster than the first rate and the second resolution is smaller than the first resolution. This dual rate system then enables a head-tracked augmented reality system to be updated at the high rate, reducing latency based artifacts.
Abstract:
An augmented reality system is provided and a method for controlling an augmented reality system are provided. The augmented reality system, for example, may include, but is not limited to a display, a memory, and at least one processor communicatively coupled to the display and memory, the at least one processor configured to generate image data having a first resolution at a first rate, store the generated image data in the memory, and transfer a portion of the generated image data having a second resolution to the display from the memory at a second rate, wherein the second rate is faster than the first rate and the second resolution is smaller than the first resolution. This dual rate system then enables a head-tracked augmented reality system to be updated at the high rate, reducing latency based artifacts.
Abstract:
A method comprises dividing a main memory into a plurality of pools, the plurality of pools including a first pool and one or more second pools, wherein the first pool is only associated with a set of one or more lines in a first cache such that data in the first pool is only cached in the first cache and wherein the one or more second pools are each associated with one or more lines in a second cache and data in the second cache is cacheable by the first cache. The method further comprises assigning each of a plurality of threads to one of the plurality of pools and determining if a memory region being accessed belongs to the first pool. If the memory region being accessed belongs to the first pool, bypassing the second cache to temporarily store data from the memory region in the first cache.